期刊文献+

基于图像抽样重组的2维线性鉴别分析 被引量:2

Two Dimension Linear Discriminant Analysis Based on Image Sampling and Regroupment
下载PDF
导出
摘要 图像识别中的2维线性鉴别分析(2DLDA)实际上是将图像的各个列(或行)视为样本向量,但这些样本向量不能满足统计学中的独立同分布要求。为克服2DLDA的不足,提出了基于图像抽样重组的2DLDA(SR2DLDA),它对图像进行下抽样,并将抽样所得的不同小图像重组成矩阵,然后对这些矩阵实施2DLDA。由于抽样重组的矩阵改善了各个列向量的独立性与分布同一性,因而SR2DLDA的识别性能有可能优于2DLDA,也优于LDA。在ORL人脸库、UMIST人脸库和FERET人脸库上的实验验证了SR2DLDA的有效性。 The columns or rows of an image are practically viewed as sample vectors in two dimension linear discriminent analysis (2DLDA). However, those sample vectors can not fulfill the independent identically distributed requirement in statistics. This paper proposes a method, called Sampling and Regroupment 2DLDA (SR2DLDA), which can improve 2DLDA and LDA. SR2DLDA down-samples the sample images, regroups the small down-sampling images to matrices, and then performs 2DLDA on them. These matrices may make progress on the independent identically distributed requirement. The experiments on ORL database, UMIST database and FERET database verify the efficiency of the SR2DLDA.
出处 《中国图象图形学报》 CSCD 北大核心 2010年第2期261-265,共5页 Journal of Image and Graphics
基金 国家自然科学基金项目(NNSF60872084)
关键词 2DLDA 图像抽样重组 完全PCA NLDA 2DLDA, Image Sampling and Regroupment, Complete PCA, NLDA
  • 相关文献

参考文献15

  • 1Fisher R A. The use of multiple measurements in taxonomic problems [J]. Annu. Eugenics, 1936,7: 179-188.
  • 2Belhumeur Peter N, Hespanha J P, Kriegman David J, et al. Fisherfaces: Recognition using class specific linear projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7): 711-720.
  • 3Turk M, Pentland A. Eigenfaces for recognition [ J ]. Cognitive Neuroscience, 1991,3( 1 ) : 71-86.
  • 4Yang Jian, Yang Jing-yu. Why can LDA be performed in PCA transformed space [ J ]. Pattern Recognition, 2003,36 (2) : 563- 566.
  • 5Liu Jun, Chen Song-can, Tan Xiao-yang. A study on three linear discriminant analysis based methods in small sample size problem [ J ]. Pattern Recognition, 2008,41 ( 1 ) : 102-116.
  • 6Chen Li-fen, Liao M H Y, Ko M T,et al. A new LDA-based face recognition system which can solve the small sample size problem [ J]. Pattern Recognition, 2000,33 (10) : 1713-1726.
  • 7Guo Yue-fei, Wu Li-de, Lu Hong, et al. Null Foley-Sammon transform [ J ]. Pattern Recognition, 2006,39 ( 11 ) : 2248- 2251.
  • 8Yang Jian, Yang J Y. An optimal FLD algorithm for facial feature extraction [ C ]//SPIE Proceedings of the Intelligent Robots and Computer Vision. Boston, MA, USA: [ s. n. ] 2001,4572: 438- 444.
  • 9Yang Jian, Zhang D, Frangi A F,et al. Two-Dimensional PCA:A new approach to appearance-based face representation and recognition [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26( 1 ) : 131-137.
  • 10Kongsontana S. Rangsanseri Y. Face recognition using 2DLDA algorithm [ C]//Proceedings of the Eighth International Symposium on Signal Processing and Its Applications. Sydney, Australia: IEEE, 2005,2: 675-678.

二级参考文献27

共引文献5

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部