期刊文献+

柔性悬吊平台光电系统动力学分析 被引量:1

Dynamics Analysis of Opto-electronic System Fixed on Soft-rope Hanged Platform
下载PDF
导出
摘要 提出了一种基于地平式光电经纬仪并带有姿态稳定装置的柔性悬吊平台光电系统的结构,以实现精密指向。根据系统各部件之间的运动学关系,采用通路矩阵、约束力元矩阵等方法描述了系统的拓扑构型。采用拉格朗日方法建立了系统的多刚体动力学模型。仿真实验研究了平台绕垂线的转动以及垂线一地平面内的摆动对视轴指向精度的影响。仿真结果:若系统沿垂线方向的转动惯量在lO。kg.rn。量级、反捻机构残余力矩10之N.m的量级,方位轴的控制指向精度与光电传感器的分辨率精度相当,可以达到10^-5rad。如果缆绳的长度在10m数量级,系统绕摆动轴的转动惯量将达到10^5~10^7kg·m^2量级。平台的摆动幅度在0.017rad时,视轴的指向控制精度可以控制在10^-4rad量级。仿真结果表明:反捻机构开启、光电系统指向控制能力强时,可以不对平台进行姿态控制。另外,摆动将造成经纬仪两个轴系的耦合。 In order to achieve opto-electronic system precision pointing, a structure of horizontal opto-electronic system, which was fixed on soft-rope hanged platform with attitude stabilizing device, was presented. According to the kinematics relationship of the parts of this system, some methods were employed to describe the topological configuration of the system, such as matrix of channel vector and matrix of constraint force element. Friction tqrqug~ platform attitude control torque and other disturbance torques were discussed. Lagrange method was used to establish the multi-body system dynamics model. Simulations were performed to study the influence caused by random rotation of the platform in the azimuth axis and pendulum in the plumb-horizon plane to the Line of Sight (LOS) pointing accuracies. It can be concluded that platform attitude controller is unnecessary when pointing controller is strong and the anti-twist system works well. Furthermore, pendulum would lead to coupling of azimuth angle and horizontal angle of LOS.
出处 《光电工程》 CAS CSCD 北大核心 2010年第2期7-15,共9页 Opto-Electronic Engineering
基金 863高技术研究发展计划资助项目
关键词 动力学模型 光电系统 柔性悬吊平台 拉格朗日方法 dynamic model opto-electronic system soft-rope hanged platform Lagrange method
  • 相关文献

参考文献7

二级参考文献17

  • 1Rebecca A Masterson, David W Miller. Development of Empirical and Analytical Reaction Wheel Disturbance Models [R]. GSFC Contract Review, May 27, 1999.
  • 2Olivier de Weck. Reaction Wheel Disturbance Analysis: Test Data Evaluation of Baseline Reaction Wheel (ITHACO E-Wheel) for the Next Generation Space Telescope (NGST) Program [R]. MemorandumMIT-SSL-NGST-98-1, October 29, 1998.
  • 3John B S. Reaction wheel low-speed compensation using a dither signal [J]. Journal of Guidance Control and Dynamics, 1993, 16(4): 617-622.
  • 4Interface control document for the Type-E reaction wheel assembly [R]. ITHACO Space Systems Inc, NY USA, February 18, 2000.
  • 5梅晓榕 兰朴森 柏桂珍.自动控制元件及线路[M].哈尔滨:哈尔滨工业大学出版社,1997..
  • 6J.Studey.Jr.,and W.Dellinger,"On - Orbit Jitter Performance of the GOES Spacecraft and Instruments," SPIE Proceedings,Vol.2812,(GOES - 8 and Beyond Conference) ,August 1996
  • 7Paul P.Zomkowski,"Preliminary Design and Analysis of the GIFTS Instrument Pointing system",NASA/CR-2003- 211937,Joint Institute for Advancement of Flight Sciences,The George Washington University Langley Research Center,Hampton,Virginia
  • 8Eric Ponslet,"System Level Modeling of the SNAP Instrument and Analysis of Reaction - Wheel - Induced Jitter," HTN - 113005 - 0007,HYTEC,INC.,December 14,2000
  • 9National Aeronautics and Space Administration Goddard Space Flight Center,"GOES I - M DataBook," DRL 101- 08,August 31,1996
  • 10Sivakumar S.K.Tadikonda and Sanda A.Cauffman,"Understanding GOES- 8 dynamics," SPIE Proceedings,Vol.2812,(GOES- 8 and Beyond Conference) ,August 1996

共引文献25

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部