期刊文献+

基于迭代收缩法和三维复数小波的视频压缩传感重构 被引量:4

Compressed Sensing Video Reconstruction Based on Iterative Shrinkage and 3D Complex Wavelet
下载PDF
导出
摘要 分析了压缩传感逐帧重构视频信号的不足。针对这种方法的缺点,提出了一种多帧按组重构的压缩传感视频重构算法。在观测阶段对视频帧逐帧进行随机观测,在重构阶段利用视频信号帧内、帧间的相关性,将多帧视频信号看作三维信号,采用迭代收缩法在每步的迭代过程中用残差来更新重构信号,并利用三维变换,如三维双树复数小波变换等对每步迭代后的重构信号进行阈值处理。实验结果表明,能通过随机观测值精确的重构原始视频,达到较高的信噪比,说明有效地利用了视频帧间的相关性,消除了逐帧重构时的帧间抖动现像。 Since the compressed sensing video reconstruction flame by flame suffers interframe dithering, a multi-flame reconstruction algorithm of compressed sensing by group is presented. First, observe randomly flame by frame, and then make use of interframe correlation as three-dimensional signal. Second, in each step of the iterative process, update the reconstructed video by using the residuals. Finally, carry out the signal threshold processing based on three-dimensional transform, such as the 3D Dual-Tree Complex Wavelet Transform etc. Experimental results show that it can precisely reconstruct the original video by using randomly observed values, and achieve a higher signal to noise ratio. It is shown that algorithm uses the relevance of video frames effectively to eliminate the interframe dithering in reconstruction flame by flame.
出处 《光电工程》 CAS CSCD 北大核心 2010年第2期108-112,121,共6页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(60772079)
关键词 压缩传感 随机投影 视频压缩传感重构 三维双树复数小波 迭代收缩 compressed sensing random projection compressed sensing video reconstruction 3D dual-tree complexwavelet iterative shrinkage
  • 相关文献

参考文献14

  • 1Donoho D. Compressed sensing [J]. IEEE Transactions on Information Theory(S0018-9448), 2006, 52(4): 1289-1306.
  • 2Candes E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory(S0018-9448), 2006, 52(2): 489-509.
  • 3Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit [J]. SlAM Journal on Scientific Computing(S1064-8275), 1999, 20(1): 33-61.
  • 4Figueiredo M, Nowak R, Wright S. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems [J]. IEEE Selected Topics in Signal Processing(S1932-4553), 2007, 1(4): 586-597.
  • 5Candes E J, Romberg J. Practical Signal Recovery from Random Projections [J]. Proc. of SPIE(S0277-786X), 2005, 5419: 76-86.
  • 6Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J]. Communications on Pure and Applied Mathematics(S0010-3640), 2004, 57(11): 1413-1457.
  • 7Selesnick W, Sendur L. Video denoising using 2D and 3D dual-tree complex wavelet transforms [J]. Proc. of SPIE (S0277-786X), 2005, 5207:607-618.
  • 8Li-Wei Kang, Chun-Shien Lu. Distributed compressive video sensing [C]//IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, April 19-24, 2009: 1169-1172.
  • 9Doy T T, Trany T D, Gan L. Fast compressive sampling with structurally random matrices[C]// IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, Nevada, USA, March 30-April 4, 2008: 3369-3372.
  • 10Fomasier M, Rauhut H. Iterative Thresholding Algorithms [J]. Applied and Computational Harmonic Analysis(S1063- 5203), 2008, 25(2): 187-208.

同被引文献43

  • 1马华东,陶丹.多媒体传感器网络及其研究进展[J].软件学报,2006,17(9):2013-2028. 被引量:186
  • 2鲁平,赵龙,陈哲.改进的Sage-Husa自适应滤波及其应用[J].系统仿真学报,2007,19(15):3503-3505. 被引量:60
  • 3DONOHO D L. Compressed sensing[ J]. IEEE Transactions on In- formation Theory, 2006, 52(4) : 1289 - 1306.
  • 4CANDES E J. Compressive sampling[ C] // Proceedings of the 2006 International Congress of Mathematicians. Piscataway, NJ: IEEE Press, 2006:1433 - 1452.
  • 5DO T T, CHEN Y, NGUYEN D T, et al. Distributed compressed video sensing[ C]//CISS 2009: Proceedings of the 43rd Annual Conference on Information Sciences and Systems. Piscataway, NJ: IEEE Press, 2009:1393 - 1396.
  • 6JUNG H, YE J C. Motion estimated and compensated compressed sensing dynamic magnetic resonance imaging: what we can learn from video compression techniques[ J]. International Journal of Ima- ging Systems and Technology, 2010, 20(2) : 81 -98.
  • 7TROCAN M, TRAMEL E W, FOWLER J E, et al. Compressed- sensing recovery of multiview image and video sequences using signal prediction[ J]. Multimedia Tools and Applications, 2013, 66(187) : 1 - 27.
  • 8HUANG H L, ANAMITRA M. Backtracking-based matching pursuit method for sparse signal reconstruction[ J]. IEEE Signal Processing Letters, 2011, 18(7): 391-394.
  • 9BARANIUK R G. Compressive sensing [ lecture notes] [ J]. IEEE Signal Processing Magazine, 2007, 24(4): 118 -121.
  • 10CANDES E J. The restricted isometry property and its implications for compressed sensing[ J]. Comptes Rendus Mathematique, 2008, 346(9) : 589 -592.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部