期刊文献+

基于中心差分粒子滤波的SLAM算法 被引量:30

A SLAM Algorithm Based on Central Difference Particle Filter
下载PDF
导出
摘要 针对移动机器人同时定位与地图创建(Simultaneous localization and mapping,SLAM)中的FastSLAM算法,存在非线性系统线性化处理和计算雅可比矩阵的缺点,本文提出了基于Sterling多项式插值处理非线性系统的SLAM方法.该方法基于Rao-Blackwellized粒了滤波框架,利用中心差分滤波方法产生改进的建议分布函数,提高了机器人位姿估计的精度;利用中心差分滤波初始化特征和更新地图中的特征,提高了地图创建的精度;针对实际应用中存在虚假特征的情况提出了一种有效的地图管理方法.在同等粒了数的情况下,该方法改进了SLAM结果的精度.基于仿真和实际数据的实验结果验证了该方法的有效性. There are two serious drawbacks in FastSLAM (Simultaneous localization and mapping), which are the derivation of the Jacobian matrices and the linear approximations of nonlinear functions. To overcome the serious drawbacks of the previous frameworks, this paper provides a robust SLAM algorithm based on the Sterling polynomial interpolation. It uses the central difference filter (CDF) to compute the proposal distribution in Rao-Blackwellized particle filter, then to initialize and update each feature state. For practical application, an effective mechanism for feature management is proposed. This approach improves the state estimation accuracy, and requires a smaller number of particles than previous approaches. Both simulation and experimental results are used to validate the effectiveness of the proposed algorithm.
出处 《自动化学报》 EI CSCD 北大核心 2010年第2期249-257,共9页 Acta Automatica Sinica
基金 国家重点基础研究发展计划(973计划)(2007CB311005) 国家自然科学基金(90820017)资助~~
关键词 同时定位与地图创建 RAO-BLACKWELLIZED粒子滤波 中心差分滤波器 建议分布函数 Simultaneous localization and mapping Rao-Blackwellized particle filter central difference filter (CDF) proposal distribution
  • 相关文献

参考文献19

  • 1Smith R, Self M, Cheeseman P. A stochastic map for uncertain spatial relationships. In: Proceedings of the 4th International Symposium of Robotics Research. California, USA: MIT Press, 1987. 467-474.
  • 2Thrun S, Burgard W, Fox D. Probabilistic Robotics. Cambridge: MIT Press, 2005.
  • 3Durrant-Whyte H F, Bailey T. Simultaneous localization and mapping: part Ⅰ. IEEE Transactions on Robotics and Automation, 2006, 13(2): 99-108.
  • 4Bailey T, Durrant-Whyte H F. Simultaneous localization and mapping: part Ⅱ. IEEE Transactions on Robotics and Automation, 2006, 13(2): 108-117.
  • 5Dissanayake M W M G, Newman P, Clark S, Durrant- Whyte H F, Csorba M. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 2001, 17(3): 229-241.
  • 6Bailey T. Mobile Robot Localisation and Mapping in Extensive Outdoor Environments [Ph.D. dissertation], University of Sydney, Australia, 2002.
  • 7Doucet A. de Freitas N, Murphy K P, Russell S J. Rao- Blackwellised particle filtering for dynamic Bayesian networks. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence. Stanford, USA: Morgan Kaufmann Publishers. 2000. 176-183.
  • 8Montemerlo M, Thrun S, Koller D, Wegbreit B. FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: Proceedings of the AAAI National Conference on Artificial Intelligence. Edmonton, Canada: Springer, 2002. 1-6.
  • 9Montemerlo M, Thrun S, Koller D, Wegbreit B. FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence. Acapulco, Mexico: Springer, 2003. 1151-1156.
  • 10Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482.

同被引文献331

引证文献30

二级引证文献796

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部