期刊文献+

一类随机混杂系统的鲁棒方差控制 被引量:3

Robust Variance-constrained Control of a Class of Stochastic Hybrid Systems
下载PDF
导出
摘要 对一类结构参数不完全已知的Markov跳变参数系统,研究使得闭环系统的稳态状态方差小于某个给定的上界,同时满足一定H∞性能的状态反馈鲁棒方差控制器设计问题.运用线性矩阵不等式(Linear matrix inequality,LMI)方法,对系统进行了方差分析,给出并证明了控制器存在的条件,进而用一组线性矩阵不等式的可行解给出了控制器的一个参数化表示.通过建立一个具有LMI约束的凸优化问题,给出了最小方差鲁棒控制器的设计方法.最后仿真结果表明了该方法的有效性. The design of a state feedback robust variance controller is considered, which guarantees the closed-loop steady-state variance to be less than a given upper bound and concerns some H∞ performance for a class of Markov jump systems whose mode is not available completely. Based on linear matrix inequality (LMI) method, system variance is analyzed and the existence conditions of such controllers are proposed and proved. A parameterized representation of a set of desired controllers is characterized in terms of the feasible solutions to the LMI system. The problem of designing the minimum variance robust controller is formulated as a convex problem with LMI constrains. Finally, the simulation results show the effectiveness of the method proposed in this paper.
出处 《自动化学报》 EI CSCD 北大核心 2010年第2期337-343,共7页 Acta Automatica Sinica
基金 国家高技术研究发展计划(863计划)(2007AA701405) 国家自然科学基金(60874040) 空军工程大学工程学院优秀博士学位论文创新基金(BC06004)资助~~
关键词 方差约束 H∞性能 容错控制系统 MARKOV跳变系统 乘性噪声 Variance constraint H∞ performance fault tolerant control systems (FTCS) Markov jump system multiplicative noise
  • 相关文献

参考文献18

  • 1Patton R J, Frank P M, Clark R N. Fault Diagnosis in Dynamic Systems: Theory and Applications. London: Prentice Hall, 1989. 69-73.
  • 2Mariton M. Jump Linear Systems in Automatic Control. New York: Marcel Decker, 1990.91-105.
  • 3Costa O L V, Fragoso M D, Marques R P. Discrete Time Markov Jump Linear Systems. London: Springer-Verlag, 2005. 135-150.
  • 4Mahmoud M S, Shi P. Robust control for Markovian jump linear discrete-time systems with unknown nonlinearities. IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 2002, 49(4): 538-542.
  • 5Xu S Y, Chen T W. Robust H∞ control for uncertain discrete-time stochastic bilinear systems with Markovian switching. International Journal of Robust and Nonlinear Control, 2005, 15(5): 201-217.
  • 6Aberkane S, Ponsaxt J C, Sauter D. Output feedback H∞ control of a class of stochastic hybrid systems with wiener process via convex analysis. InternationaJ JournaJ of Innovative Computing, Information and Control, 2006, 2(6): 1179-1196.
  • 7Mahmoud M, Jiang J, Zhang Y. Stochastic stability analysis of active fault-tolerant control systems in the presence of noise. IEEE Transactions on Automatic Control, 2001, 46(11): 1810-1815.
  • 8Mahmoud M, Jiang J, Zhang Y. Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis. Berlin: Springer, 2003. 138-151.
  • 9Shi P, Boukas E K, Nguang S K, Guo X P. Optimal robust disturbance attenuation for discrete-time active fault tolerant control systems with uncertainties. Optimal Control Applications and Methods, 2003, 24(2): 85-101.
  • 10Samir A, Jean C P, Mickael R, Dominique S. Output feedback control of a class of stochastic hybrid systems. Automatica, 2008, 44(5): 1325-1332.

二级参考文献3

  • 1孙金生,李军,冯缵刚,胡寿松.鲁棒容错控制系统设计[J].控制理论与应用,1994,11(3):376-380. 被引量:36
  • 2Xie Lihua,Automatica,1993年,29卷,4期,1133页
  • 3Xu J H,Automat Contr,1990年,AC.37卷,10期,1588页

共引文献17

同被引文献28

  • 1孙敏慧,邹云,徐胜元.马尔可夫切换系统的鲁棒H_∞控制[J].控制与决策,2005,20(12):1370-1373. 被引量:10
  • 2王子栋,孙翔,孙金生,王执铨.不确定线性系统的鲁棒容错控制设计[J].航空学报,1996,17(1):112-115. 被引量:17
  • 3赵平,康宇.一类二维Markov跳跃非线性时滞系统的镇定控制[J].系统科学与数学,2007,27(3):451-463. 被引量:3
  • 4Chen Wu-hua, Guan Zhi-hong,Yu Pei.Delay-dependent stability and H oo control of uncertain discrete-time markovian jump systems with mode-dependent time delays [J].Systems & Control Letters,2004,52(5):361-376.
  • 5Shi Peng,Xia Yuan-qing,Liu G P, et al.On designing of slidingmode control for stochastic jump systems [J].IEEE Transactions on Automatic Control,2006,51 (1):97-103.
  • 6Brian D O, Anderson, Arvin Dehghani. Challenges of adaptive control-past, permanent and future [J] . Annual Reviews in Control,2008,32(2): 123-135.
  • 7Brian D O,Anderson.Failures of adaptive control theory and their resolution [J].,Comminications in Information and Systems, 2005,5(1):1-20.
  • 8Dimitrios Karagiarmis, Alessandro Astolfi. Nonlinear adaptive control of systems in feedback form: an alternative to adaptive backstepping[J].Stems & Control Letters,2008,57(9):733-739.
  • 9Karagiannis D, Astolfi A, Ortega R.Nonlinear stabilization via system immersion and manifold invariance: survey and new results [J]. Systems & Control Letters,2005,3 (4): 801-817.
  • 10Cheng Dai-zhan,Guo Yu-qian.Stabilization of nonlinear systems via the center manifold approach[J]. Systems & Control Letters, 2008,57(6):511-518.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部