摘要
为了有效解决遗传算法中收敛速度与局部最优解的矛盾,文中提出了一种具有改进的选择算子和改进的交叉算子的遗传算法。使用文中改进的选择算子,能够增加算法收敛于全局最优解的概率,从而不容易陷入局部最优,也就增加了找到最优解的概率,使用文中改进的交叉算子可以加快算法的收敛速度,从而缩短寻找最优解的时间。实验证明,这两种改进算子的结合能以较快速度收敛于全局最优解,因此能很好地解决遗传算法中收敛速度与局部最优解之间的矛盾。
In order to solve the conflict between algorithm convergence and the best local answer effectively,puts forward an improved genetic algorithm with a modified selection operator and a modified crossover operator. It can increase the probability of the best answer and well avoid approaching the best local solution by using the modified selection operator,it also increased the probability of finding the best answer,and using the modified crossover operator can speed up the convergence rate, thus shortening the time to find the best answer. The experimental result indicates that the two modified operators' combination can converge to the best answer at higher speed, so it can well solve the contradiction between the convergence rate of genetic algorithm and the best local solution.
出处
《计算机技术与发展》
2010年第2期44-47,51,共5页
Computer Technology and Development
基金
国家自然科学基金(60273043)
关键词
遗传算法
选择算子
交叉算子
适应度
相似度
genetic algorithm
selection operator
crossover operator
fitness
similarity degree