期刊文献+

基于支持向量机的语义图像分类研究 被引量:3

Research of Semantic Image Classification Based on Support Vector Machine
下载PDF
导出
摘要 随着多媒体数据库的不断发展,传统的利用关键词进行图像检索已经越来越不能满足图像检索的需要,基于内容的图像检索已成为当前的研究热点。对图像的颜色和纹理特征进行提取,融合图像的颜色和纹理特征作为图像的特征向量,用支持向量机实现图像的低层特征和高级语义间的关联。实验结果表明,多特征的图像检索要比单一的特征检索效果好,在HSV颜色特征的基础上引入灰度共生矩阵纹理特征后可有效提高检索效率,而且采用支持向量机融合多特征可成功用于图像的语义的检索。 With the continually development of multimedia database, traditional image retrival method which is based on keywords can not satisfy most of the requirement of image retrieval. In recent years, more and more researchers have transferred their focus of scientific researches on content - based image retrieval. Extract the color and texture feature of the image, integrate color feature and texture feature as the feature vectors. Use support vector machine correlating image lov-level feature with high- level semantic. Experimental result shows that, the retrieval of image with multiple features is better than that of image with single feature. The introduction of gray scale texture feature into HSV color feature can improve the efficiency of image retrieval. Furthermore, support vector machine can be successfully used in image semantic retrieval.
作者 李晶 姚明海
出处 《计算机技术与发展》 2010年第2期75-78,共4页 Computer Technology and Development
关键词 支持向量机 HSV颜色特征 灰度纹理特征 灰度共生矩阵 support vector machine HSV color feature gray scale texture feature GLCM
  • 相关文献

参考文献8

  • 1Xie Hua, Omega A. Feature Representation and Compression for Content - based Retrieval[C]//Proceedings of SPIE - The International Society for Optical Engineering. [s. l. ] : Is. n, ], 2001 : 111 - 122,.
  • 2王上飞,陈恩红,汪祖媛,王煦法.基于支持向量机的图像情感语义注释和检索算法的研究[J].模式识别与人工智能,2004,17(1):27-33. 被引量:10
  • 3Heckbert P S. Color image quantization for frame buffer display[ J ]. Comput. Graph, 1982,16:297 - 307.
  • 4Haralick R, Shanmugan K, Dinstein I. Textural features for image classification[J ]. IEEE Trans System Man Cybernetics, 1973(3) :610 - 621.
  • 5徐建华.图形处理与分析[M].北京:科技出版社,1992.
  • 6Manjunath B S, Ma W Y. Texture Features for browsing and retrieval of large image data[J ]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1996,18(8) :837 - 842.
  • 7Cristianini N, Shawe - Taylor J. An Introduction to Support Vector Machines [ M ]. Cambridge: Cambridge University Press, 2000.
  • 8Gunns. SVM for Classification and Regression[R]. [s. l. ] :University of Southampton, Faculty of Engineering Science and Mathematics, School of Electronics and Computer Science, 1998.

二级参考文献6

  • 1Arnold W M, Semeulders, et al. Content- Based Image Retrieval at the End of Early Years. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(12) : 1349 - 1380.
  • 2Colombo C, Bimbo A D, Plata P. Semantic in Visual Information Retrieval. IEEE Multimedia, 1999, 6(3): 38-63.
  • 3Wang Shangfei, Chen Enhong, Wang Xufa. Image Retrieval Based on an Artificial Emotion Model. In: Zhang Liming, Gu Fanji, eds. Proc of 8th International Conference on Neural Information Processing ( ICONIP - 2001 ). Shanghai: Fudan University Press,2001,Ⅲ: 725 - 729.
  • 4VapnikVN 著 张学工 译.统计学习理论的本质[M].北京:清华大学出版社,1998.85-124.
  • 5StrongmmaKT 著 张燕云 译.情绪心理学[M].沈阳:辽宁人民出版社,1987.307-343.
  • 6王惠锋,孙正兴,王箭.语义图像检索研究进展[J].计算机研究与发展,2002,39(5):513-523. 被引量:76

共引文献11

同被引文献26

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部