期刊文献+

基于Adaboost算法的人眼检测中样本选择研究 被引量:11

Research of Samples Selection in Eye Detection Based on Adaboost Algorithm
下载PDF
导出
摘要 人眼检测在表情识别和人脸识别中起着非常重要的作用,是驾驶员疲劳检测的基础。采用了基于Adaboost算法的人眼检测的方法,训练阶段中的样本选择是Adaboost算法的关键,分析和讨论了训练阶段不同特征的正、负样本对最终检测结果的影响,提出了一种新型的负样本选择方法,并实验得到了各种样本训练生成的分类器对人脸库的检测率和误检率,得出用去除眼睛部分余下的人脸作为负样本训练出来的分类器能有效降低误检率,为以后的眼睛分类器训练提供了实验依据。 Eyes detection plays a very important role in the facial expression recognition and face recognition,it is basic of driver fatigue detection. Use a method based on Adaboost algorithm for eyes detection. ,Samples selection is the key for Adaboost algrithm. Different characteristics of the positive and negative samples in the training phase are analyzed and discussed. A novel feature of the negative samples is proposed, generate the detection rates and the false rate of different classifers to face database,and figure out that classifer which is generated by the remaining part of face after removing eyes as negative samples can reduce false rate effectively. It provides the experimental basis for training eye classifier in the future.
出处 《计算机技术与发展》 2010年第2期133-136,共4页 Computer Technology and Development
基金 广东省科技计划项目(2006A10503002)
关键词 人眼检测 训练 负样本 误检率 eye detection training positive and negative samples false rate
  • 相关文献

参考文献8

  • 1Zhou Z H, Geng X, Projection function for eye detection[ J ]. Pattern Recognition. 2004,37(5) : 1049 - 1056.
  • 2Kawaguehi T,Hidaka D,Rizon M. Detection d eyes from human faces by Hough transforman and separability filter[C]// Proceedings of Int. Conf. on Image Processing. [ s. l. ] : [ s. n. ] ,2000:49 - 52.
  • 3Viola P,Jones M. Rapid object detection using a Boosted cascade of simple features [ C]//Computer Vision and Pattern Recognition, 2001. CVPR 2001. Kauai, Hawaii: [s. n. ], 2001:511-518.
  • 4Ma Yong, Ding Xiaoqing, Wang Zhenger, et al. Robust precise eye location under probabilistic framework [ C]//Automatic Face and Gesture Recognition,2004. Seoul, Republic of Korea: [s. n. ] ,2004:339 - 344.
  • 5赵江,徐鲁安.基于AdaBoost算法的目标检测[J].计算机工程,2004,30(4):125-126. 被引量:11
  • 6许世峰,曾义.基于Adaboost算法的人眼状态检测[J].计算机仿真,2007,24(7):214-216. 被引量:6
  • 7Martinez A M, Benavente R. The AR Face Database [ R]. Barcelona, Spain: [s. n. ], 1998 : 1- 4.
  • 8Gao W, Cao B, Shan S G, et al. The CAS- PEAL largescale Chinese face database and evaluation protocols[ R]. Beijing,China:Joint Research & Development Laboratory,2004.

二级参考文献7

  • 1R T Kumar,S K Raja,A G Ramakrishnan.Eye detection using color cues and projection functions[C].Proceedings 2002 International Conference on Image Processing,Jun.2002.24-28.
  • 2Hsin-Chia Fu,P S Lai,R S Lou,H T Pao.Face detection and eye localization by neural network based color segmentation[C].Proceedings 2000 International Conference on Neural Networks for Signal Processing,Dec.2000.507-516.
  • 3Fok Hing,Chi Tivive,Abdesselam Bouzerdoum.A fast neural-based eye detection system[C].Proceedings of 2005 International Symposium on Intelligent Signal Processing and Communication Systems.Dec.2005.
  • 4P Viola,M Jones.Rapid object detection using a Boosted cascade of simple features[C].Proc.Of IEEE Conf.on CVPR 2001.511-518.
  • 5Yong Ma,Xiaoqing Ding,Zhenger Wang,Ning Wang.Robust precise eye location under probabilistic framework[C].Proceedings of the sixth IEEE International Conference on Automatic Face and Gesture Recognition,April 2004.
  • 6沈学华,周志华,吴建鑫,陈兆乾.Boosting和Bagging综述[J].计算机工程与应用,2000,36(12):31-32. 被引量:66
  • 7赵江,徐鲁安.基于AdaBoost算法的目标检测[J].计算机工程,2004,30(4):125-126. 被引量:11

共引文献15

同被引文献78

引证文献11

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部