期刊文献+

基于重模多项式矩阵理论的分组密码算法 被引量:1

A Block Encryption Algorithm Which is Based on Theory of Repeat Module Polynomial
原文传递
导出
摘要 运用重模多项式理论,设计了密钥控制下的重模多项式矩阵环上的可逆矩阵加密新算法,算法具备很好的抵抗现有攻击的性能,有很好的应用前景. Using repeat module polynomial theory, We design a novel block cipher algorithm over repeat module polynomial invertible matrix rings that be under control key. The algorithm has a very good performence to resist all attacks, so has a good application prospect.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第2期76-82,共7页 Mathematics in Practice and Theory
基金 河北省自然科学基金(F2006000711)
关键词 S盒 重模多项式矩阵环 加密 s-box repeat module polynomial matix ring encryption
  • 相关文献

参考文献5

  • 1Aoki K, Ichikawa T, Kanda M, et al. Specification of Camellia-A 128-bit Block Cipher[M]. Nippon Telegraph and Telegraph Corporation and Mitsubishi Electric Corporation, 2000.
  • 2Lee H, Lee S, Yoon J, et al. The SEED Encryption fllgorithm. RFC 4269, 2005.
  • 3Adams C. RFC 2144: The CAST-128 Encryption Algorithm. RFC Editor, 1997.
  • 4胡波,赵红芳,冯春雨.一种新的重模剩余类环中元素逆的求法[J].河北省科学院学报,2009,26(1):1-3. 被引量:2
  • 5赵红芳,胡波,陈杰,檀蕾.重模多项式的分解及求逆[J].河北省科学院学报,2009,26(1):4-8. 被引量:1

二级参考文献1

  • 1华罗庚.教论导引[M].北京:科学出版社,1975.

共引文献1

同被引文献4

  • 1Gray Jeremy, Parshall Karen Hunger. Episodes in the history of modem algebra( 1800-950 )[M], American Mathematical Society, 2007.
  • 2Ahlquist Gregory C, Nelson Brent, Rice Michael. Optimal finite field multipliers for FPGAs [ J ]. Lecture Notes in Computer Science, 2004, 1673:51-61.
  • 3Paar C. A new architecture for a parallel finite field multiplier with low complexity based on composite fields [J]. IEEE Transactions on Computers, 1996, 45 (7) : 856 - 861.
  • 4Garcia-Martinez Mario Alberto, Posada-Gomez Ruben, Rodriguez-Henl-iquez Francisco. FPGA implementation of an efficient multiplier over finite fields GF(2^m)[ C ]//2005 International Conference on Reconfigurable Computing and FPGAs. Puebla City, Mexico, 2005: 1592508.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部