摘要
对一类病毒与抗体的反应扩散方程组利用变量变换的方法得到与其具有同解性的反应扩散方程.在一定假设条件下,研究此方程解的一些性质,再由紧性得到满足原假设的解的收敛序列,从而得到此方程解的存在性、惟一性与收敛性.借助于方程与方程组的同解性,最终得到了反应扩散方程组解的性质.
In this paper, through studing a reaction diffusion system for antibody and virus, we obtain a reaction diffusion equation which has the same solution to the reaction diffusion system by changing variable. First, under the weaker supose, we study some properties of the solution to the equation .By comoutness it exists a convergent subsequence when satisfing the original suppose, so we draw the conclusion about the existence, uniqueness and convergence of solution to the equation. Finally, we obtain the properties of solution to the original system of reaction diffusion depending same solution.
出处
《数学的实践与认识》
CSCD
北大核心
2010年第2期103-107,共5页
Mathematics in Practice and Theory
基金
黑龙江省教育厅科学技术研究项目(11531426)
关键词
反应扩散方程组
变量变换
存在性
惟一性
收敛性
reaction diffusion system
change of variable
existence
uniqueness
convergence