期刊文献+

时间测度上具有Holling-N类功能反应和扩散的捕食系统的周期解 被引量:10

Periodic Solutions for a Class of Predator-Prey System on Time Scales with Holling-N Functional Response and Diffusion
原文传递
导出
摘要 在时间测度上研究了一类具有Holling-N类功能反应和扩散的捕食系统,利用Mawhin重合度理论建立了这类系统周期解存在的一些新的充分性判据,从而使这一类系统的连续与离散情形,即相应的微分方程和差分方程的周期解存在性问题得到了统一. This paper investigates the existence of periodic solutions for a class of predator- prey system on time scales with Holling-N functional response and diffusion, By using a continuation theorem based on coincidence degree theory, we obtain sufficient criteria for the existence of periodic solutions for the system. Therefore, the methods are unified to provide the existence of the desired solutions for the continuous differential equations and discrete difference equations.
作者 黎勇 秦发金
出处 《数学的实践与认识》 CSCD 北大核心 2010年第2期126-134,共9页 Mathematics in Practice and Theory
关键词 时间测度 Holling—N类功能反应 扩散 捕食系统 周期解 重合度 time scale Holling-N functional response diffusion predator- prey system periodic solutions coincidence degree
  • 相关文献

参考文献12

二级参考文献59

  • 1张炳根.测度链上微分方程的进展[J].中国海洋大学学报(自然科学版),2004,34(5):907-912. 被引量:32
  • 2陈兰荪 井竹君.捕食者-食饵相互作用微分方程的极限环存在性和唯一性[J].科学通报,1984,24(9):521-523.
  • 3Huo H. Periodic solutions for a semi-ratio-dependent predator-prey system with functional responses[J]. Appl Math Letters,2005.18(3):313-320.
  • 4Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[M]. Springer, Berlin,1977.
  • 5Leslie P H, Gower J C, The properties of a stochastic model for the predator-prey type of interaction between two species[J]. Biometrika, 1960,47 : 219-234.
  • 6Wang Q, Fan M. Wang K. Dynamics of a class of nonautonomous semi-ratio-dependent predator-prey systems with functionalresponses[J]. J Math Anal Appl,2003.278(2):443-471.
  • 7Bohner M, Fan M, Zhang J. Existence of periodic solutions in predator-prey and competition dynamic systems[J]. Nonlinear Analysis : Real World Applications ,2006,7(5): 1193-1204.
  • 8Freedman H I. Deterministic Mathematical Models in Population Ecology [M ]. Monograph Textbooks Pure Applied Math, Marcel Dekker, New York, 1980,57.
  • 9Fazly M, Hesaaraki M. Periodic solutions for a discrete time predator-prey system with monotone functional responses[J]. C R Acad Sci Paris, Set I,2007,345(4):199-202.
  • 10Ding X, Lu C, Liu M. Periodic solutions for a semi-ratio-dependenl predator-prey system with nonmonotonic functional response and time delay[J]. Nonlinear Analysis: Real World Applications.2008,9(3):762-775.

共引文献93

同被引文献100

  • 1陆忠华,陈兰荪.周期系数的Schoner模型分析[J].数学物理学报(A辑),1992,12(S1):127-129. 被引量:5
  • 2张炳根.测度链上微分方程的进展[J].中国海洋大学学报(自然科学版),2004,34(5):907-912. 被引量:32
  • 3刘启明,徐瑞,王卫国.具有时滞的Schoener模型的全局稳定性[J].生物数学学报,2006,21(1):147-152. 被引量:7
  • 4陈超,纪昆.具有连续时滞和不同扩散率的非自治Schoner模型的概周期解[J].浙江大学学报(理学版),2006,33(5):485-490. 被引量:3
  • 5Ding W, Han M. Dynamic of a non-autonomous predator--prey system with infinite delay and diffusion [J]. Comput Math Appl, 2008, 56(5): 1 335-1 350.
  • 6Zhang Z, Hou Z, Li W. Multiplicity of positive periodic solutions to a generalized delayed predator--prey system with stocking [J]. Nonlinear Anal, 2008, 68(9) : 2 608-2 622.
  • 7Sun Y G, Saker S H. Positive periodic solutions of discret three -level food-chain model of Holling type II [J]. Appl Math Compu. , 2006, 180(1): 353-365.
  • 8Fan M. Wang Q. Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator-prey systems [J]. Discrete Contin Dyn Syst Set B, 2004, 4(3) :563-574.
  • 9Bohner M, Fan M, Zhang J M. Existence of periodic solutions in predator-prey and competition dynamic systems [J].Nonlinear Anal: RWA, 2006, 7(5): 1 193-1 204.
  • 10Zhang J, Jin Z, Yan J,et al. Stability and Hopf bifurcation in a delayed competition system [J].Nonlinear Anall, 2009, 70: 658-670.

引证文献10

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部