期刊文献+

有限连续拓扑空间上的相交定理和广义变分不等式 被引量:1

Intersection Theorems and Generalized Variational Inequalities on Finite Continuous Topological Spaces
原文传递
导出
摘要 根据已知的FC-空间上的KKM型定理得出若干个相交定理,作为它们的应用,利用转移开闭映射的特征讨论广义变分不等式解的存在问题.本文的结果改进和推广了文献中的相应结论. Some intersection theorems were obtained by using the well known KKM type theorem on FC-spaces, and existence problem of solution for generalized variational inequalities were discussed by using property of transfer open-clsoed valued mapping as applications of intersection theorems. These results generalize and improve some known results in recent literature.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第3期161-167,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(10361005) 延边大学科研项目([2004]8号)
关键词 FC-空间 FC-子空间 转移开[闭]映射 上半连续的 KKM映射 变分不等式 FC-space FC-subspace transfer open[closed] valued map upper semicontinuous KKM map variational inequality
  • 相关文献

参考文献7

  • 1丁协平.局部FC-空间内的Himmelberg型不动点定理(英文)[J].四川师范大学学报(自然科学版),2005,28(2):127-130. 被引量:23
  • 2Tian G Q. Generalization of FKKM theorem and the Ky Fan minimax inequality with applications to maximal elements, price equilibrim and complementarity[J]. J Math Anal Appl, 1992, 170: 457- 471.
  • 3Horvath C D. Contractibility and generalized convexity[J]. J Math Anal Appl, 1991, 156: 341-357.
  • 4Park S H. New Susclasses of Generalized Concex Spaces[M]. Fixed Point Theory and Applications (Chuinju, 1998), 91-98, Nova publ, Huntington, NY, 2002.
  • 5丁协平.乘积拓扑空间内的重合点组定理及应用(Ⅰ)[J].应用数学和力学,2005,26(12):1401-1408. 被引量:27
  • 6朴勇杰.KKM type theorems on generalized convex spaces.黑龙江大学学报:自然科学版,2005,22(1):49-52.
  • 7朴勇杰.一般化凸空间上KKM型定理对择一不等式的应用.高等数学通报,2004,(3):39-42.

二级参考文献15

  • 1丁协平.COINCIDENCE THEOREMS INVOKING COMPOSITES OF ACYCLIC MAPPINGS AND APPLICATIONS[J].Acta Mathematica Scientia,1999,19(1):53-61. 被引量:2
  • 2Park S. A unified fixed point theory of multimaps on topological vector spaces[J]. J Korean Math Soc,1998,35:803~829.
  • 3Tarafdar E. Fixed point theorems in locally H-convex uniform spaces[J]. Nonlinear Anal TMA,1997,29:971~978.
  • 4Ding X P. Abstract convexity and generalizations of Himmelberg type fixed point theorems[J]. Computers Math Applic,2001,41(3~4):497~504.
  • 5Park S. Fixed point theorems in locally G-convex spaces[J]. Nonlinear Anal TMA,2002,48:869~879.
  • 6Horvath C. Contractibility and general convexity[J]. J Math Anal Appl,1991,156:341~357.
  • 7Ding X P. Maximal element theorems in product FC-spaces and generalized games[J]. J Math Anal Appl, in press.
  • 8Park S, Kim H. Coincidence theorems for admissible multifunctions on generalized convex spaces[J]. J Math Anal Appl,1996,197:173~187.
  • 9Park S, Kim H. Foundations of the KKM theory on generalized convex spaces[J]. J Math Anal Appl,1997,209:551~571.
  • 10Ben-El-Mechaiekh H, Chebbi S, Flornzano M, et al. Abstract convexity and fixed points[J]. J Math Anal Appl,1998,222:138~150.

共引文献44

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部