期刊文献+

无阻尼振动方程解的稳定性 被引量:3

The Stability of the Solutions to the Un-damped Oscillation Equation
原文传递
导出
摘要 在无干扰力的环境中,定性分析无阻尼振动方程解的稳定性,可归结为下述几个问题:牛顿第二运动定律应用于振动建模描述力与运动的关系,线性化方程是求解微分方程的有效方法;单摆振动的等时性与非等时性特征表明,微分方程的解不仅决定于方程本身,而且也决定于解的初值;微分方程定性理论,特别是李雅普诺夫第二方法,是研究非线性微分方程解的稳定性的有效手段;如何构造李雅普诺夫函数,至今仍是一个吸引人的研究课题. Under conditions without disturbance forces, the stability of the solutions to the an-damped oscillation equation by qualitative analysis can be conduced as follows: Newton's second law of motion is applied to modeling pendulum, describing the relations of force and motion; Linearing equation is a effective method to solve differential equation; The isochronicle and anisochronicle character of single pendulum states, the solutions of differential equation are determined by not only the equation itself, but also its initial value; the stable theory of differential equation ,especial Liapounov's second method, is a effective approach to research the stability of the solutions to nonlinear differential equation; How to construct Liapounov function is still an attractive problem at present.
作者 吴业明
出处 《数学的实践与认识》 CSCD 北大核心 2010年第3期224-227,共4页 Mathematics in Practice and Theory
关键词 无阻尼振动 微分方程 李雅普诺夫 稳定性判据 un-damped oscillation differential equation stability diagnosis
  • 相关文献

参考文献3

  • 1丁同仁,李承志.常微分方程教程[M].北京:高等教育出版社,2003.
  • 2叶其孝等译.托马斯微积分[M].北京:高等教育出版社,2003.
  • 3李荣华,等.微分方程数值解法[M].北京:高等教育出版社,2003.6-11.

共引文献9

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部