期刊文献+

基于服务关系统计的多粒度服务组合方法 被引量:3

Multi-scale service composition approach based on statistics of service relationship
下载PDF
导出
摘要 传统工作流方法进行服务组合存在两个问题,服务组合无法自动生成和复杂服务无法重用,基于服务关系统计的多粒度服务组合方法(MSWC)有效解决了这两个问题。MSWC包括服务关系统计学习、服务粗分和服务细分三个部分,分别用于进行服务关系统计计算、服务分组和服务映射。通过服务关系统计学习计算了有逻辑和无逻辑的服务关联度;服务粗分将服务需求分解为无逻辑关系的组;而服务细分通过逻辑概率将服务分组映射成系统中已有的复杂服务,将这些复杂服务串接起来,即完成服务组合。因为三个步骤均是自动执行,因此MSWC是自动组合方法,而服务分组最终映射为系统已有的复杂服务,因此是一个多粒度服务组合方法。最后通过实验结果分析表明,该算法能够很好地适应网络上Web Service快速增长的情况,并且具备较好的服务组合性能。 Based on statistical methods, Muhi-Scale Web service Composition (MSWC) approach optimizes traditional workflow method in two aspects: automatic orchestration and complex service reuse. There are three steps in MSWC, service learning, coarse-grained service decomposition and fine-grained service decomposition. Service learning majors for calculating service probabilities, including logic and non-logic. Inspired by divide-and-conquer, services in the request list are divided into several groups in coarse-grained service decomposition, service logics are determined and service groups are mapped into existed atom and complex services in fine-grained service decomposition. And service composition is achieved by cascading all groups. For three steps are all automatic and existed complex services are used, MSWC is an automatic and complex service reuse approach for service composition.
出处 《计算机应用》 CSCD 北大核心 2010年第2期380-384,共5页 journal of Computer Applications
基金 国家973计划项目(2007CB307100) 国家自然科学基金资助项目(60432010)
关键词 多粒度 WEB服务组合 服务关系统计 服务粗分 服务细分 multi-scale Web service composition statistics of service relationship coarse-grained service decomposition fine-grained service decomposition
  • 相关文献

参考文献14

  • 1CASATI F, ILNICKI S, JIN L J, et al. Adaptive and dynamic service composition in eFlow[ C] // Proceedings of the 12th International Conference on Advanced Information Systems Engineering, LNCS 1789. London: Springer, 2000:13-31.
  • 2ZHANG HUA-PING, YU HONG-KUI, XIONG DE-YI, et al. HHMMbased Chinese lexieal analyzer ICTCLAS[ C] // Proceedings of the Second SIGHAN Workshop on Chinese Language Processing. Morristown: Association for Computational Linguistics. 2003:184 - 187.
  • 3BROWN P F, deSOUZA P V, MERCER R L, et al. Class-based ngram models of natural language [ J]. Computational Linguistics, 1992, 18(4) : 467 -479.
  • 4DODDINGTON G . Automatic evaluation of machine translation quality using n-gram co-occurrence statistics[ M]. San Francisco: Morgan Kaufmann, 2002.
  • 5LIN C-Y, HOVY E. Automatic evaluation of summaries using Ngram co-occurrence statistics[ C]// NAACL'03: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology. Morristown: Association for Computational Linguistics, 2003:71 -78.
  • 6BARRON A R, COHEN A, DAHMEN W, et al. Approximation and learning by greedy algorithms[ J]. Annals of Statistics, 2008, 36(1) : 64 -94.
  • 7AHUJA R K, MEHLHORN K, ORLIN J B, et al. Faster algorithms for the shortest path problem[ J]. Journal of the Association for Computing Machinery, 1990, 37(2) : 213 - 223.
  • 8ZHAN B F, NOON C E. Shortest path algorithms: An evaluation using real road networks[J]. Transportation Science, 1998, 32(1) : 65 -73.
  • 9SEDGEWICK R. Algorithms in C, Part 5: Graph algorithms[ M]. [ S. l. ] : Addison-Wesley, 2001.
  • 10范焱,郑诚,王清毅,蔡庆生,刘洁.用Naive Bayes方法协调分类Web网页[J].软件学报,2001,12(9):1386-1392. 被引量:53

二级参考文献3

共引文献67

同被引文献27

引证文献3

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部