期刊文献+

小样本跳变水质时序数据预测方法 被引量:3

Forecasting method for water quality time series of few and abnormal data
下载PDF
导出
摘要 根据三峡库区某些断面水质监测数据具有样本小、成库前后数据出现跳变的特点,提出一种适用于三峡库区的水质参数预测模型(ELS-SVM)。ELS-SVM通过建立数据预处理模型对原始小样本时序数据进行处理,增强了时序数据的平稳性,并使用模拟退火(SA)算法优选最小二乘支持向量机(LS-SVM)模型参数。与典型的小样本预测模型的比较实验表明,ELS-SVM模型更适用于三峡库区小样本水质时序数据的预测。 According to the characteristics of small samples and sudden change of some sections in Three Gorges, the ELS-SVM water quality prediction model for Three Gorges was proposed, which consisted of Equal Level Pretreatment Model (ELPM) and Least Squares Support Vector Machines (LS-SVM). ELPM was brought forward to preprocess raw time series data to enhance the smoothness, and Simulated Annealing (SA) algorithm was used for choosing the optimal parameters of LS- SVM. The experimental results indicate that, compared to the typical forecasting models in limited samples prediction, the ELS-SVM forecasting model is superior to the others in water quality parameter prediction of Three Gorges.
出处 《计算机应用》 CSCD 北大核心 2010年第2期486-489,505,共5页 journal of Computer Applications
基金 重庆市科委重大科技攻关项目(CSCT2006AC7024)
关键词 预处理 最小二乘支持向量机 模拟退火 三峡库区 水质参数预测 pretreatment Least Squares Support Vector Machine (LS-SVM) Simulated Annealing (SA) Three Gorges water quality prediction
  • 相关文献

参考文献18

二级参考文献64

共引文献2853

同被引文献27

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部