摘要
提出了一种基于组合智能的入侵检测模型,入侵检测中存在的主要问题是数据特征属性多,以及存在不完整数据问题。如果一个实际的入侵检测系统不对数据进行处理,则无法准确地检测到入侵行为。为解决这个问题,本文利用组合智能方法,通过对数据特征属性的约简,将输入信息模糊化和数据本身的训练和学习,能够解决入侵检测中存在的问题,该模型有较好的数据处理能力,实验结果表明引入组合智能后的入侵检测效率大大提高。
An intrusion detection (ID) model is proposed based on the integrated intelligence. A major problem of ID is that large data characteristic and exists half-baked data. If an actual ID cannot process data, so the intrusion detection behavior cannot be detected by the detection system accrual. To solve the problem ,integrated intelligence technique is utilized to the IDS, though data feature reduction, the import information is blurred, and the data is trained and learned, solving the problems of the IDS. The model has the characters of high data process rate, the efficiency of ID is improved.
出处
《微计算机信息》
2010年第6期89-90,97,共3页
Control & Automation
基金
基金申请人:蔡乐才
项目名称:基于安全应用的智能多模式行为识别系统研究
基金颁发部门:四川省科技厅支撑计划项目(2008FZ0109)
关键词
入侵检测
组合智能
组合集成
Intrusion Detection
Integrated Intelligence
Integrated