期刊文献+

基于贪婪算法的疾病相关蛋白质子网搜索 被引量:1

Disease-related Protein Subnetwork Search Based on Greedy Algorithm
下载PDF
导出
摘要 各种研究结果不断证明,人类各种常见疾病都属于复杂疾病,是由多基因、多因素、遗传和环境共同作用的结果。借助于高通量生物技术的飞速发展,生物学家建立起了蛋白交互网络,如果借助复杂网络研究的方法,从这些网络中找出与疾病相关的蛋白质子网络,将有助于我们更深入地了解生物体的运作机制。本文提出了一种基于贪婪算法的搜索方法,能够自动地搜索整个网络中的子网或模块,并且能够结合芯片数据同时进行T检验来判断子网络对疾病表型的区分能力。通过计算子网的P值,给出该蛋白质子网络的统计显著性值并进行区分能力排序。运行结果表明,本方法不但能够用于发现已知的疾病蛋白,而且能够对未知的蛋白进行预测,结合生物芯片技术,将会对疾病基因的研究提供有价值的信息。 Previous studies continuously prove that many common human diseases are complex diseases which caused by multiple genes, multiple factors and the combination of the heredity and the environment. Benefited from the rapid development of high throughput biotechnology, biologists established protein interaction networks. It would he helpful for us to understand the mechanism of life if we could find interacting protein subnetworks in these networks which related to diseases using complex network analysis. In this paper, we proposed a search strategy based on greedy algorithm. This strategy is able to automatically search for subnetworks or modules in the whole network, and evaluate the subnetworks' ability of discriminating diseases' phenotypes by performing student t tests. After computing the p values of subnetworks, it sorts the subnetworks according to their discriminating abilities revealed by t scores. Our results show that the proposed method is not only capable of finding known disease proteins, but also predicting proteins with unknown functions. When combined with biochip technology, this method will provide valuable insights for genetic research of diseases.
作者 樊振杰 王炜
出处 《微计算机信息》 2010年第6期188-189,217,共3页 Control & Automation
关键词 蛋白交互网络 贪婪算法 蛋白质子网 C++ Protein-Protein interaction network greedy algorithm protein subnetwork C++
  • 相关文献

参考文献4

  • 1徐霜,梁家荣,肖杰,李银.Torus多处理机中的子网搜索算法研究[J].微计算机信息,2009,25(3):231-233. 被引量:1
  • 2Peri S, Navarro J, Kristiansen T, Amanchy R, Surendranath V, Muthusamy B, Gandhi T, Chandrika K, Deshpande N, Suresh S, Rashmi B, Shanker K, Padma N, Niranjan V, Harsha H, Talreja N, Vrushabendra B, Ramya M, Yatish A, Joy M, Shivashankar H, Kavitha M, Menezes M, Choudhury D, Ghosh N, Saravana R, Chandran S, Mohan S, Jonnalagadda C, Prasad C, Kumar-Sinha C, Deshpande K, Pandey A: Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res 2004, (32 Database):497-501.
  • 3Han-Yu Chuang, Eunjung Lee, Yu-Tsueng Liu, Doheon Lee and Trey Ideker. Network-based classification of breast cancer metastasis. Molecular Systems Biology. 2007;3:140.
  • 4Oswald P , Souery D, Kasper S, Lecrubier Y, Montgomery S, Wyckaert S, Zohar J, Mendlewicz J. Current issues in bipolar disorder:, a critical review. European Neuropsychopharmacology. 2007 vol. 17(no. 11).

二级参考文献7

  • 1周先谱,童朝南,尹晓杰.一种基于共享总线的冗余容错多处理器系统[J].微计算机信息,2005,21(09Z):56-58. 被引量:4
  • 2C.A.F.De Rose, H-U Heiss, Barry Linnert, Distributed dynamic processor allocation for multicomputers. Parallel Computing 33 (2007) 145-158.
  • 3G.Gabrani, Tushar Mulkar, A quad-tree based algorithm for processor allocation in 2D mesh-connected multicomputers. Computer Standards & Interfaces 27 (2005)133-147.
  • 4Geunmo Kim, Hyunsoo Yoon, On Submesh Allocation for Mesh Muhicomputers:A Best-Fit Allocation and a Virtual Submesh Allocation for Faulty Meshes. IEEE Transaction on Parallel And Distributed Systems. VOL.9,NO.2 1998(175-184).
  • 5C.-Y. Chang, P. Mohapatra, Performance improvement of allocation schemes for mesh connected computers, Journal of Parallel and Distributed Computing 52 (1) (1998) 40 - 68.
  • 6I. Ababneh, An efficient free-list submesh allocation scheme for two-dimensional mesh-connected muhicomputers, Journal of Systems and Software 79(8) (2006) 1168-1179.
  • 7陈国良.并行计算-结构·算法·编程[M].北京:高等教育出版社,2001.9.

同被引文献29

  • 1郑玉新,庄志雄.基因组时代生物标志物研究的机遇与挑战[J].中华预防医学杂志,2005,39(3):155-156. 被引量:5
  • 2Cohen M M, Diamond J M. Medical research. Are we losing the war on cancer[J]. Nature, 1986, 323(6088): 488-489.
  • 3Adams J U. Building the bridge from bench to bedside[J]. Nat Rev Drug Discov, 2008, 7(6): 463-464.
  • 4Ciccimaro E, Blair I A. Stable-isotope dilution LC-MS for quantitative biomarker analysis[J]. Bioanalysis, 2010, 2(2):311-341.
  • 5Hossain M, Kaleta D T, Robinson E W, et al. Enhanced sensitivity for selected reaction monitoring mass spectrometry-based targeted proteomics using a dual stage electrodynamic ion funnel interface[J]. Mol Cell Proteomics, 2011, 10(2): M000062-MCP201.
  • 6Dunn W B, Bailey N J, Johnson H E. Measuring the metabolome: current analytical technologies[J]. Analyst, 2005,130(5):606-625.
  • 7Maclntyre D A, Jimenez B, Lewintre E, et al. Serum metabolome analysis by 1H-NMR reveals differences between chronic lymphocytic leukaemia molecular subgroups[J]. Leukemia, 2010, 24(4): 788-797.
  • 8Sreekumar A, Poisson L M, Rajendiran Metabolomic profiles delineate potential role T M, et al. for sarcosine in prostate cancer progression[J]. Nature, 2009, 457(7231) 910-914.
  • 9Chen J, Zhang X, Cao R, et al. Serum 27-nor-5 [3- cholestane-3, 7, 12, 24, 25 pentol glucuronide discovered by metabolomics as potential diagnostic biomarker for epithelium ovarian cancer[J]. J Proteome Res, 2011, 10(5) 2625-2632.
  • 10Hollstein M, Sidransky D, Vogelstein B, et al. p53 mutations in human cancers[J]. Science, 1991, 253(5015): 49-53.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部