期刊文献+

面向科技主题发展分段的社区核心圈技术 被引量:9

A Core Group Method for Segmenting the Life Cycle of Scientific Topics
下载PDF
导出
摘要 现有的主题发展分析主要集中在总体趋势的识别上,不能回答"该领域目前处于什么发展状态?"等问题。提出了一种新的研究任务,旨在考察科技主题所处的发展状态。为完成此任务,在利用网络社区建模主题的基础上,提出了一种基于社区核心圈的分析技术。按照核心圈生长过程中的分裂期和分裂间期,将主题发展划分为产生、扩张、浸润及收缩四个状态。实验表明,依据社区核心圈可准确判断新兴主题的产生,且其成长模式对整个主题的发展有巨大影响。 Current research on topic development analysis mainly focuses on finding general trend, thus it can not be used to answer the question like "What state is the topic being at?". This paper presents a new task which aims to segment the development of a scientific topic into several states. Based on community partitioning in social net- work, a core group technique is proposed. According to the division phase and interphase in the life cycle of core groups, the development of a topic is separated into four states, i.e. birth state, extending state, saturation state and shrinkage state. Experimental results on a real dataset show that the proposed core group method can accurately judge the generation of a new topic, and the growth pattern of a core group greatly influences the development of its relevant topic.
出处 《计算机科学与探索》 CSCD 2010年第2期170-179,共10页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.60873007 111计划No.B07037 湖北省自然基金No.2008CDB340~~
关键词 社会网络分析 网络社区 主题周期划分 social network analysis network community topic cycle partitioning
  • 相关文献

参考文献1

二级参考文献16

  • 1Wang J,Zeng Z,Zhou L Clan:An algorithm for mining closed cliques from large dense graph databases[C]//Proceedings of the International Conference on Data Engineering,Atlanta,2006:73-83.
  • 2Asur S,Ucar D,Parthasarathy S.An ensemble framework for clustering protein-protein interaction networks[J].Bio-informatics,2007,23:29-40.
  • 3Qiao Shaojie,Tang Changjie,Peng Jing,et al.VCCM mining:Mining virtual community core members based on gene expression programming[J].LNCS,2006,39(17):133-138.
  • 4Freeman L C.The sociological concept of"group":An empirical test of two models[J].American Journal of Sociology,1992,98(1):152-166.
  • 5Brandes U,Edebach T.Network analysis:Methodological foundations[M].[S.l.]:Springer,2005.
  • 6Srinivasan A.The value of strong in-approxiability results for clique[C]//STOC'00:Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing,New York,2000:144-152.
  • 7Wan N,Parthasarathy S,Tan K,et al.CSV:Visualizing and mining cohesive subgraphs[C]//SIGMOD,Vancouver,2008:445-457.
  • 8Ankerst M,Breunig M,Kriegel H P,et al.OPTICS:Ordering points to identify the clustering structure[C]//SIGMOD Philadelphia,1999:49-60
  • 9Ng A Y,Jordan M I,Weiss Y.On special clustering:Analysis and an algorithm[C]//Advances in Neural Information Processing Systems,Vancouver,2001,14:849-856.
  • 10Hu H,Yan X,Huang Y,et al.Mining coherent dense subgraphs across massive biological networks for functional discovery[J].Bio-informatics,2005,21(1):213-221.

共引文献1

同被引文献135

引证文献9

二级引证文献237

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部