摘要
结合统计回归与神经网络的优点,使用基于神经网络的非线性部分最小二乘回归法,建立了醋酸乙烯生产装置催化剂活性的非参数模型,模型的精度高且计算量较小。实际应用证明了方法的有效性。
A non parametric model of catalyst activity in the device of vinylacetate has been developed using nonlinear partial least square regression based on neural networks. Because of combining the merits of statistical regression and neural networks, the model has high accuracy and generosity. Practical application also proved its effectiveness.
出处
《华东理工大学学报(自然科学版)》
CAS
CSCD
北大核心
1998年第6期717-721,共5页
Journal of East China University of Science and Technology
基金
国家自然科学基金
上海市科学技术委员会自然科学基金
关键词
部分最小二乘法
催化剂
活性
非线性
非参数模型
partial least squares(PLS)
neural networks
neural networks based non
linear PLS(NNPLS)
catalyst activity modeling