期刊文献+

带有多面体扰动的半监督v-支持向量分类机 被引量:1

Semi-Supervisedv-Support Vector Machines with Perturbation in Polyhedron
原文传递
导出
摘要 在通常建立的优化模型中,一般都假定输入的数据是精确的,而实际生活中我们得到的数据总会带有测量或统计误差,因此,本文考虑数据在多面体内扰动的半监督两类问题,以v-支持向量分类机为基础,借鉴把半监督两类分类问题转化为一个凹规划的思想,给出数据在多面体内扰动的半监督v-支持向量分类算法。该算法的参数v易于选择,而数值试验也表明该算法具有良好的稳定性和较好的分类结果。 The classical paradigm in mathematical programming is to develop a model that assumes that the input data is precisely known and equal to some nominal values. In practice, the data usually have pertur- bations since they are subject to measurement or statistical errors. Therefore, we proposed the Semi-Supervisedv-Support Vector classification algorithm with perturbation in polyhedrons, which are based on formulating the problem as a concave minimization problem. It is solved by a successive linear approximation algorithm. Numerical experiments confirm that the parameter v is more stabile than parameter C, and the robustness of the proposed method.
出处 《中国管理科学》 CSSCI 北大核心 2010年第1期143-148,共6页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(10601064) 北京市属高等学校人才强教计划"学术创新团队建设计划"项目(PHR200907134)
关键词 支持向量机 半监督学习 扰动 Support Vector Machines semi-supervised learning perturbation
  • 相关文献

参考文献16

  • 1Soyster, A. L.. Convex programming with set-inclusive constraints and applications to inexact linear programming [J]. Operations Research, 1973,21: 1154-1157.
  • 2Ben-Tal,A. , Nemirovski,A.. Rubust solutions of linear programming problems constrainedwithuncertain data[J]. Mathematical Programming, 2000,88 : 411- 424.
  • 3Ben-Tal,A. , Nemirovski,A.. Rubust convex optimization [J]. Mathematics of Operations Reseach, 1998,23 769-805.
  • 4Ben-Tal,A. , Nemirovski,A.. Rubust solutions to uncertain programs[J].Operations Research, Letters, 1999, 25: 1-13.
  • 5El-Ghaoui, L. , Lebret, H.. Rubust solutions to least- square problems to uncertain data matrices [J].on Matrix Analysis and Applications, 1997,18: 1035- 1064.
  • 6El-Ghaoui, L. , Oustry, F. , Lebret, H.. Rubust solutions to semidefinite programs [J]. SIAM Journal on Optimization, 1998,9: 33-52.
  • 7Sim Melvyn. Robust Optimization [D]. Phd. Thesis, June 2004.
  • 8Xu, L. , Neufeld, J. , Larson, B. , Schuurmans, D.. Maximum margin clustering [J]. Advances in Neural Information Processing Systems, 2004,17 (NIPS-04),.
  • 9Xu, L., Sehuurmans, D.. Unsupervised and semisu pervised multi-class supportvector machines[C]. AAAI 05, The Twentieth National Conference on Artificial Intelligence, 2005.
  • 10Zhao, K. , Tian, Y.J. , Naiyang Deng, N. Y.. Unsupervised and Semi-Supervised Two-class Support Vector Ma-chines [C]. Proceedings of the Sixth IEEE International Conference on Data Mining Workshops, Hong Kong, December 18-22, 2006: 813-817.

同被引文献24

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部