摘要
Invisible watermarking methods have been applied in frequency domains, trying to embed a small image inside a large original image. The original bitmap image will be converted into frequency domain to obtain the discrete cosine transform (DCT) matrices from its blocks. The bits of the logo image are embedded in random color components of the original image, as well as in random positions in each selected block. These positions are alternating current (AC) coefficients of the DCT matrix. The randomness is obtained from RC4 pseudorandom bit generator that determines in which color component this logo image bits will be embedded. The embedded bits have been hidden in random blocks in the image, which are chosen according to a (semi-random) function proposed in this work.
Invisible watermarking methods have been applied in frequency domains, trying to embed a small image inside a large original image. The original bitmap image will be converted into frequency domain to obtain the discrete cosine transform (DCT) matrices from its blocks. The bits of the logo image are embedded in random color components of the original image, as well as in random positions in each selected block. These positions are alternating current (AC) coefficients of the DCT matrix. The randomness is obtained from RC4 pseudorandom bit generator that determines in which color component this logo image bits will be embedded. The embedded bits have been hidden in random blocks in the image, which are chosen according to a (semi-random) function proposed in this work.
基金
supported by the Deanship of Research and Graduate Studies at Applied Science University, Amman, Jordan