期刊文献+

机械手时间最优脉动连续轨迹规划算法 被引量:88

Time-optimal and Jerk-continuous Trajectory Planning Algorithm for Manipulators
下载PDF
导出
摘要 为使机械手的作业效率达到最优,同时确保运动的平稳性,提出一种新的最优轨迹规划方法。通过逆运动学运算得到与任务空间轨迹对应的关节空间位置序列,采用7次B样条曲线插值方法构造启动和停止运动参数可控,且速度、加速度和脉动均连续的关节轨迹。将机械手运动学约束转化为B样条曲线的控制顶点约束,采用序列二次规划方法求解最优运动时间节点,进而规划出满足非线性运动学约束的时间最优脉动连续轨迹。仿真和试验结果表明,提出的轨迹规划方法为关节控制器提供理想的轨迹,使机械手在最短的时间平稳地跟踪任务空间的任意指定轨迹。 In order to optimize the productivity and ensure the running stability of manipulators, a new optimal trajectory planning algorithm is proposed. Position series in joint space are obtained by applying inverse kinematic algorithm to a specified trajectory in task space, and B-splines of seven degree are exploited to interpolate joint position series and generate joint trajectories with continuous velocity, acceleration and jerk, as well as controllable start-stop kinematic parameters. By converting kinematic constraints of manipulators to constraints on control points of B-splines, optimal time nodes are solved by using sequential quadratic programming strategy, then time-optimal and jerk-continuous trajectories which satisfy nonlinear kinematic constraints are planned. Simulating and experimental results show that the proposed trajectory planning algorithm provides ideal trajectories for joint controller, and ensures manipulators to track any specified trajectory in task space stably with the minimum traveling time.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2010年第3期47-52,共6页 Journal of Mechanical Engineering
关键词 机械手 轨迹规划 时间最优 脉动连续 序列二次规划 Manipulator Trajectory planning Optimal execution time Continuous jerk Sequential quadratic programming
  • 相关文献

参考文献1

二级参考文献8

  • 1[1]BOBROW J E, DUBOWSKY S, GIBSON J S. Time-optimal control of robotic manipulators along specified paths [J]. Int J of Robotics Research, 1985,4(3):3-17.
  • 2[2]TONDU B, BAZAZ S A. The three-cubic method: an optimal online robot joint trajectory generator under velocity, acceleration, and wandering constraints [J]. Int J of Robotics Research, 1999, 18(9):893-901.
  • 3[3]WEINREB A, BRYSON A E. Optimal control of systems with hard control bounds [J]. IEEE Trans on Automatic Control, 1985,30(11): 1135-1138.
  • 4[4]GALICKI M. The planning of robotic optimal motions in the presence of obstacles [J]. Int J of Robotics Research, 1998,17(3):248-259.
  • 5[5]BOBROW J E. Optimal robot path planning using the minimum time criterion [J]. IEEE Trans on Robotics and Automation, 1988,4(4):443-450.
  • 6[6]LIN C S, CHANG P R, LUH J Y S. Formulation and optimization of cubic polynomial joint trajectories for industrial robots [J]. IEEE Trans on Automatic Control, 1983,28(12):1066-1073.
  • 7[7]SIMON D. The application of neural networks to optimal robot trajectory planning [J]. Robotics and Autonomous Systems, 1993,11(1):23-34.
  • 8[8]HIMMELBLAU D M. Applied Nonlinear Programming [M]. New York: McGraw-Hill, 1972.

共引文献42

同被引文献653

引证文献88

二级引证文献677

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部