摘要
设P是R^n上常系数m阶齐次线性偏微分算子,m>1,则对于任何给定的正数c、b、ε,下述Cauchy问题 存在非平凡解u。
Let P() be a homogeneous linear Partial differential operator of order m>1 with constant coefficients on R^n, then for any given positive constants c,b,ε,there exists a non-trivial solution u = u(x,t)∈C~∞(R^n×R_+) for the Cauchy problem:such that
出处
《纯粹数学与应用数学》
CSCD
1998年第4期85-88,共4页
Pure and Applied Mathematics
关键词
线性偏微分算子
不唯一性
柯西问题
解
linear partial differential operator
Cauchy problem
nonuniqueness