期刊文献+

Phylogenetic diversity of bacterial biofilms covering the settlement substrates of nona-porous abalones (Haliotis diversicolor supertexta) 被引量:1

Phylogenetic diversity of bacterial biofilms covering the settlement substrates of nona-porous abalones (Haliotis diversicolor supertexta)
下载PDF
导出
摘要 The settlement substrates of nona-porous abalones (Haliotis diversicolor supertexta) are covered with biofilms in which several types of microorganisms coexist and interact. These microorganisms are usually important causes of juvenile abalone disease as well as organisms useful in promoting abalones’ adhesion. The bacterial community structure of the biofilms remains unclear. The aim of this research was to determine the genetic diversity and phylogenetic affiliation of the biofilm bacteria. Total DNA of bacteria in biofilms was extracted, and 16S rRNA gene clone library was constructed using the primers specific for the domain bacteria. Subsequently, 30 randomly selected positive clones were screened by PCR-restriction fragment length polymorphism (PCR-RFLP) analysis, and resulted in 15 different RFLP patterns. Sequences analysis of representatives from each unique RFLP type revealed high genetic diversity in the bacterial populations. These sequences fell into nine major lineages of the bacterial domains: α-, β-, γ-and δ-subdivisions of the Proteobacteria; Planctomycete, Actinobacteria, Firmicutes, V errucomicrobium spp., and CytophagaFlexibacter-Bacteroides spp. Phylogenetic analysis indicated that the dominant phylotypes were most closely related to environmental and clinical Burkholderia cepacia of the β-Proteobacteria, and Roseobacteria of the α-Proteobacteria. The settlement substrates of nona-porous abalones (Haliotis diversicolor supertexta) are covered with biofilms in which several types of microorganisms coexist and interact. These microorganisms are usually important causes of juvenile abalone disease as well as organisms useful in promoting abalones’ adhesion. The bacterial community structure of the biofilms remains unclear. The aim of this research was to determine the genetic diversity and phylogenetic affiliation of the biofilm bacteria. Total DNA of bacteria in biofilms was extracted, and 16S rRNA gene clone library was constructed using the primers specific for the domain bacteria. Subsequently, 30 randomly selected positive clones were screened by PCR-restriction fragment length polymorphism (PCR-RFLP) analysis, and resulted in 15 different RFLP patterns. Sequences analysis of representatives from each unique RFLP type revealed high genetic diversity in the bacterial populations. These sequences fell into nine major lineages of the bacterial domains: α-, β-, γ-and δ-subdivisions of the Proteobacteria; Planctomycete, Actinobacteria, Firmicutes, V errucomicrobium spp., and CytophagaFlexibacter-Bacteroides spp. Phylogenetic analysis indicated that the dominant phylotypes were most closely related to environmental and clinical Burkholderia cepacia of the β-Proteobacteria, and Roseobacteria of the α-Proteobacteria.
出处 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2009年第5期94-102,共9页 海洋学报(英文版)
基金 The Natural Science Foundation of Fujian Province of China under contract Nos 2005k055 and B0740012 the Innovative Research Team under contract No 2006A001 Science Foundation of Jimei University, China
关键词 nona-porous abalone (Haliotis diversicolor supertexta) settlement substrate bacterial biofilm 16S rRNA nona-porous abalone (Haliotis diversicolor supertexta), settlement substrate, bacterial biofilm, 16S rRNA
  • 相关文献

参考文献5

二级参考文献50

共引文献29

同被引文献55

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部