摘要
本文证明了指数π型整函数Bπ,p,1<p<∞中某些实插值序列的稳定性,从而证明了存在一个和p有关的正常数δp,使得当sup|uj-j<δp,u0=0时,{Gj(x)}j∈Z为Bπ,p,1<p<∞的一组无条基,其中并且我们还证得是Bπ,p,1<p<∞的一组稳定的无条件基.
In this paper, it is proved the stability of some interpolating sequences on Bπ,p, 1 < p < ∞, which is a space of exponential type π and pointed out that there exists a positive constant δp which depends on p such that if sup |uj - j| < δp, u0 = 0, then {Gj (x)}j∈Z is an unconditional basis for Bπ,p, 1 < p < ∞, where moreover, we proved also that is a stable unconditional basis for Bπ,p.
出处
《应用数学学报》
CSCD
北大核心
1998年第4期513-518,共6页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金
教委博士点基金
关键词
整函数
插值序列
无条件基
稳定性
Entire function, interpolating sequence, unconditional basis, stability