期刊文献+

运用动态谐波回归模型对MODIS叶面积指数时间序列产品的分析与预测 被引量:2

Analysis and prediction of MODIS LAI time series with Dynamic Harmonic Regression model
下载PDF
导出
摘要 运用动态谐波回归模型(Dynamic Harmonic Regression,DHR)对MODIS的长时间序列的LAI产品进行分析,可以从中分离出LAI随时间变化的多年趋势、季节变化及残差等主要成分,通过建立的模型实现LAI年间变化的短时预测。本文将所述DHR模型分析方法试用于遥感数据产品随时间变化的信息提取,对LAI年间变化的预测结果证明该方法用于遥感像元尺度LAI产品的时间序列分析与预测的效果良好。 Leaf Area Index (LAI) is one of the most important parameters in describing the dynamics of vegetation on land surfaces. LAI products have been produced from data of many remote sensing satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS). In this paper, we used the Dynamic Harmonic Regression (DHR) model to analyze the LAI time series products. The model can decompose the trend, seasonal and residuals components from the original time series, and predict the short-time LAI values. We use the DHR model to extract the time change information from the MODIS LAI time series products. The results show this method to be very effective in predicting the short-term LAI on the pixel basis.
出处 《遥感学报》 EI CSCD 北大核心 2010年第1期13-32,共20页 NATIONAL REMOTE SENSING BULLETIN
基金 国家重点基础研究发展计划(973计划)项目(编号:2007CB714407) 国家自然科学基金项目(编号:40640420073,40871163)~~
关键词 叶面积指数 时间序列 MODIS DHR模型 leaf area index (LAI), time series, MODIS, DHR
  • 相关文献

参考文献29

  • 1Alhamad M N, Stuth J and Vannucci M. 2007. Biophysical modelling and NDVI time series to project near-term forage supply: spectral analysis aided by wavelet denoising and ARIMA modelling. International Journal of Remote Sensing, 28: 2513-2548.
  • 2Canisius F, Turral H and Molden D. 2007. Fourier analysis of historical NOAA time series data to estimate bimodal agriculture. International Journal of Remote Sensing, 24:5503-5522.
  • 3Dash J, Mathur A, Foody G M, Curran P J, Chipman J W and Lillesand T M. 2007. Land cover classfication using multi-temporal MERIS vegetation indices. International Journal of Remote Sensing, 28(6): 1137-1159.
  • 4Fang H, Liang S, Townshend J R and Dickinson R E. 2008. Spatially and temporally continuous LAI data sets based on an integrated filtering method: Examples from North America. Remote Sensing of Environment, 112(1): 75-93.
  • 5French A N, Schmugge T J, Ritchie J C, Hsu A, Jacob F and Ogawa K. 2008. Detecting land cover change at the Jornada experimental range, New Mexico with ASTER emissivities. Remote Sensing of Environment, 112(4): 1730-1748.
  • 6Galford G L, Mustard J F, Melillo J, Gendrin A, Cerri C C and Cerri C E E 2008. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil Remote Sensing of Environment, 112(2): 576-587.
  • 7Huttich C, Herold M, Schmullius C, Egorov V and Bartalev S A. 2007. Indicator of Northern Eurasia's land-cover change trends from SPOT-Vegetation time-series analysis 1998-2005. International Journal of Remote Sensing, 28(18): 4199-4206.
  • 8Jakubauskas M E, Legates D R and Kastens J H. 2001. Harmonic analysis of time-series AVHRR NDVI data. Photogrammetric engineering and remote sensing, 67(4): 461-470.
  • 9Jakubauskas M E, Legates D R and Kastens J H. 2002. Crop identification using harmonic analysis of time-series AVHRR NDVI data. Computers and Electronics in Agriculture, 37(1-3): 127-139.
  • 10Lhermitte S, Verbesselt J, Jonckheere I, Nackaerts K, van Aardt J A N, Verstraeten, W W and Coppin P. 2008. Hierarchical image segmentation based on similarity of NDVI time series. Remote Sensing of Environment, 112(2): 506-521.

同被引文献38

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部