摘要
本文讨论了一类二阶方程周期解的存在唯一性条件,并得到仅a_1>0,a_(2a+k)≥0时(?)+R(sum from k=0 to n (a_2k)+1~x^(2k+1))'(?)+1/L sum from k=0 to n (a_2k)+1~x^(2k+1)=e(t)(R>0,L>0,e(t)为在一定条件下的周期函数)存在唯一渐近稳定的周期解,改进了[1-3]中的结果.
In this paper, we considerde the existence and uniqueness of periodic solution for a class of second order differential equation, also gave that only if a1 > 0, (e(t) is a Periodic function in some condition) exists unique periodic solution and the periodic solution is asymlolically stable. The results in [1-3] are improved.
出处
《数学的实践与认识》
CSCD
1998年第4期309-313,共5页
Mathematics in Practice and Theory
关键词
周期解
存在性
唯一性
微分方程
二阶
Decond order differential equation, Periodic solution, Existence, Uniqueness Asymlolically stable