摘要
本文研究了两个Jacobi矩阵的逆特征问题:I给定实数λ,μ(λ>μ)和n维非零实向量x,y,求n阶Jacobi矩阵J,使Jx=λx,Jy=μy,且λ>λ2(J)>…>λi-1(J)>μ>λi+1(J)…>λn(J),或λi(J)>λ2(J)>…>λi-1(J)>λ>λi+1(J)>…>λn-1(J)>μ·II给定实数λ,μ(λ>μ)和n维非零实向量x,y,求n阶Jacobi矩阵J,使Jx=λx,Jy=μy,且λ1(J)>λ2(J)>…>λi-1(J)>λ>μ>λi+2(J)>…>λn(J).文中给出了问题I;II有唯一解的充要条件,并给出了解的表达式.
This paper considers the following two inverse eigenproblems:(I) Given λ,μ∈R (λ >μ), and 0 ≠x, 0≠ y∈ Rn. Find an n × n Jacobian matrix J such that Jx =λx, Jy = μy, where (a) λ> λ2(J) >... > λi-1(J) >μ > λi+1(J) >... > An(J),(b) λ1(J) >... > λi-1(J) > λ> λi+1(J) >... >λn-1(J) > μ(II) Given λ,μ∈R (λ>μ), and 0 ≠x, 0 ≠y ∈Rn. Find an n ×n Jacobian matrix J such that Jx =λx,Jy =μy, where λ1(J) >λ2(J) >... >λi-1(J) > λ> μ >λi+2(J) > ... >An (J).Some necessary and sufficient conditions for the existence of unique solution to these problems are given. Also explicit expression of the solution are given.
出处
《系统科学与数学》
CSCD
北大核心
1998年第4期410-416,共7页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金