期刊文献+

Effect of Valence Electron Structure on Temper Process and Hardness of the Supersaturated Carburized Layer 被引量:3

Effect of Valence Electron Structure on Temper Process and Hardness of the Supersaturated Carburized Layer
下载PDF
导出
摘要 By measuring the hardness of carburized layer of a new type supersaturated carburizing steel (35Cr3SiMnMoV) at different temper temperature for 2 h, the relationship curve between the carburized layer hardness and the temper temperature is established. The result indicates that the hardness goes down firstly, then up and down, just like a wave consistent with the temperature increase. A secondary hardening peak appears at 570 ℃ or so. Based on Empirical Election Theory (EET) of Solids and Molecules, the valence electron structures (VESs) containing α-Fe-C, α-Fe-C-Me segregation structure units and carbide are calculated. The laws of temper process and hardness change with the temper temperature are explained, and the fact that reconstruction of θ-Fe3C is prior to that of special carbide at high tempering is analyzed with the phase structure formation factor, S, being taken into consideration. Therefore, the laws of temper process and hardness change of supersaturated carburized layer at different temper temperature can be traced back to valence electron structure (VES) level of alloy phase. By measuring the hardness of carburized layer of a new type supersaturated carburizing steel (35Cr3SiMnMoV) at different temper temperature for 2 h, the relationship curve between the carburized layer hardness and the temper temperature is established. The result indicates that the hardness goes down firstly, then up and down, just like a wave consistent with the temperature increase. A secondary hardening peak appears at 570 ℃ or so. Based on Empirical Election Theory (EET) of Solids and Molecules, the valence electron structures (VESs) containing α-Fe-C, α-Fe-C-Me segregation structure units and carbide are calculated. The laws of temper process and hardness change with the temper temperature are explained, and the fact that reconstruction of θ-Fe3C is prior to that of special carbide at high tempering is analyzed with the phase structure formation factor, S, being taken into consideration. Therefore, the laws of temper process and hardness change of supersaturated carburized layer at different temper temperature can be traced back to valence electron structure (VES) level of alloy phase.
作者 石巨岩
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第1期127-134,共8页 武汉理工大学学报(材料科学英文版)
基金 Funded by the Science and Technology Foundation of Retuned Students Studying Abroad of Shanxi Province of China(No. 1995-26)
关键词 supersaturated carburizing steel temper process valence electron structure HARDNESS supersaturated carburizing steel temper process valence electron structure hardness
  • 相关文献

参考文献8

二级参考文献29

  • 1刘志林,李志林,孙振国,杨小平,陈敏.铸铁的价电子结构及元素石墨化行为的判据[J].中国科学(A辑),1995,25(9):989-994. 被引量:5
  • 2张锐生.近代高强度炮钢[J].兵器材料科学与工程,1995,18(3):3-9. 被引量:20
  • 3郭峰,黄进峰,吴护林,贾代金,刘筱薇.高强韧性炮钢的组织和力学性能[J].金属热处理,2005,30(11):31-34. 被引量:13
  • 4郑修本.机械制造工艺学[M].北京:机械工业出版社,1992.111-117.
  • 5北京航空学院102教研室 西北工业大学401教研室.钢铁热处理及合金钢[M].北京:北京航空出版社,1984..
  • 6[1]斯温 M V.陶瓷的结构与性能[M].北京:科学出版社,1998:176.
  • 7[2]Fan T X, Zhang D, Wu R J, et al. Polytypism of SiC and Interfacial Structurein SiCp/Al Composites[J]. Journal of Materials Science , 2002, 37:5191.
  • 8[8]Zhang Y F, Li J Q, Zhou L X, et al. A Theoretical Study on the Chemical Bonding of 3d-transition-metal Carbides[ J ]. Solid State Communications,2002, 121(8) :411.
  • 9[10]Liu Z S, Fredriksson H. On the Precipitation of TiC in Liquid Iron by Reactions between Different Phases[J]. Metallurgical and Materials Transactions,1997,28(A) :471.
  • 10[11]Xing Z P, Guo J T, Han Y F, et al. Microstructure and Mechanical Behavior ofthe NiAl-TiCin-situ Composite[J]. Metall. Mater. Trans. A,1997,28(A): 1079.

共引文献23

同被引文献25

  • 1罗伯茨WL 王廷溥 潘大炜 田异 译.冷轧带钢生产[M].北京:冶金工业出版社,1985..
  • 2连家创 刘宏民.板厚板形控制[M].北京:兵器工业出版社,1995.150-175.
  • 3于瑞芝,刘成业.我国支承辊材料的发展过程及热处理工艺简介[J].大型铸锻件,2007(5):46-48. 被引量:21
  • 4Kima H Y, Kimb C, Bae W B, et al. Development of optimization technique of warm shrink fitting process for automotive transmission parts(3D FE analysis)[J]. Journal of Materials Processing Technology, 2007(187/188): 458-462.
  • 5SUN Dengyue, ZHANG Yuanfang, ZHA Xianwen, et al. Analyzing of the thermal stress and fatigue life of the liquid core heavy reduction rolling mill's roller[J]. Applied Mechanics and Materials, 2010, 37/38: 166-170.
  • 6SUN Dengyue, ZHANG Yuanfang, ZHA Xianwen, et al. Study on the roller's thermal stress of the liquid core heavy reduction rolling mill[J]. Applied Mechanics and Materials, 2010, 29/32: 1380-1384.
  • 7SUN Dengyue, WEI Zhihe, ZHOU Huifeng, et al. The research of big internal cooled backup roll with numbers of sleeves assembled together[J]. Applied Mechanics and Materials, 2009, 16/17/18/19: 1203-1207.
  • 8白振华.带钢平整板形控制技术的开发研究[D].秦皇岛:燕山大学机械工程学院,2002:81-108.
  • 9WANG Dongcheng, PENG Yan, LIU Hongmin. A high-speed rolling force model for thin strip and temper rolling[C]//Intemational Conference on Mechanical Engineering and Mechanics, Wuxi, China: Science Press USA Inc., 2007: 808-812.
  • 10Miguel L, Carlos P6rez-Cerd6n J,Carme B.Influence of the thermalassembly process on the stress distributions in shrink fit joints [J].Key Engineering Materials, Advanced Design and Manufacture,2014,572(1):205-208.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部