期刊文献+

Atmospheric Methane over the Past 2000 Years from a Sub-tropical Ice Core, Central Himalayas

Atmospheric Methane over the Past 2000 Years from a Sub-tropical Ice Core, Central Himalayas
下载PDF
导出
摘要 A high-resolution 2000-year methane record has been constructed from an ice core recovered at 7200 m a.s.l. on the Dasuopu Glacier in the central Himalayas. This sub-tropical methane record reveals an increasing trend in the concentration of methane during the industrial era that is similar to observations from polar regions. However, we also observed the differences in the atmospheric methane mixing ratio between this monsoon record and those from polar regions during pre-industrial times. In the time interval 0-1850 A.D., the average methane concentration in the Dasuopu ice core was 782±40 ppbv and the maximum temporal variation exceeded 200 ppbv. The difference gradient of methane concentration in Dasuopu ice core with Greenland and Antarctica cores are 66±40 ppbv and 107±40 ppbv, respectively. This suggests that the tropical latitudes might have acted as a major global methane source in pre- industrial times. In addition, the temporal fluctuation of the pre-industrial methane records suggests that monsoon evolution incorporated with high methane emission from south Asia might be responsible for the relatively high methane concentration observed in the Dasuopu ice core around A.D. 800 and A.D. 1600. These results provide a rough understanding of the contribution of tropical methane source to the global methane budget and also the relationship between atmospheric methane and climate change. A high-resolution 2ooo-year methane record has been constructed from an ice core recovered at 7200 m a.s.1, on the Dasuopu Glacier in the central Himalayas. This sub-tropical methane record reveals an increasing trend in the concentration of methane during the industrial era that is similar to observations from polar regions. However, we also observed the differences in the atmospheric methane mixing ratio between this monsoon record and those from polar regions during pre-industrial times. In the time interval o N 1850 A.D., the average methane concentration in the Dasuopu ice core was 782±40 ppbv and the maximum temporal variation exceeded 200 ppbv. The difference gradient of methane concentration in Dasuopu ice core with Greenland and Antarctica cores are 66±40 ppbv and 107±40 ppbv, respectively. This suggests that the tropical latitudes might have acted as a major global methane source in preindustrial times. In addition, the temporal fluctuation of the pre-industrial methane records suggests that monsoon evolution incorporated with high methane emission from south Asia might be responsible for the relatively high methane concentration observed in the Dasuopu ice core around A.D. 800 and A.D. 1600. These results provide a rough understanding of the contribution of tropical methane source to the global methane budget and also the relationship betweenatmospheric methane and climate change.
出处 《Journal of Mountain Science》 SCIE CSCD 2010年第1期1-14,共14页 山地科学学报(英文)
基金 supported by the National Natural Science Foundation of China (40671044) the Ministry of Science and Technology of China (2005CB422004)
关键词 达索普冰芯 大气甲烷 喜马拉雅山 亚热带 达索普冰川 甲烷浓度 北极地区 时空变化 climate change ice core air bubble atmospheric methane Dasuopu Glacier centralHimalayas
  • 相关文献

参考文献2

二级参考文献4

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部