摘要
设S是一个正则*-半群,C*(S)是S的最小自共轭全子半群.在S上定义关系ρ:aρbu,v∈C*(S)s.t.u*u=aa*,uu*=bb*,v*v=b*b,vv*=a*a,b=uav.用G表示S/ρ的置换群,P(G)表示G非空子集的集合.τ是S到P(G)的映射满足条件:(1)s1,s2∈S,(s1τ)(s2τ)(s1s2)τ;(2)s∈S,{g-1∈G:g∈sτ}s*τ;(3)1τ-1=C*(S).则T={(s,g)∈S×G:g∈sτ}是S的一个C*-酉覆盖.称正则*-半群S的一个子集H是允许的,如果关于任意a,b∈H,u,v∈C*(S),有a*b,ab*∈C*(S)和ua,bv∈H.用C(S)表示S的所有允许子集(注意到C(S)是逆半群).设S是一个正则*-半群,G是一个群.如果θ:g→θg是G到C(S)的一个准同态满足∪g∈Gθg=S,则T={(s,g)∈S×G:s∈θg}是S的一个C*-酉覆盖且T/σG.反之,S的每一个C*-酉覆盖都可以如此构造.
Let S be a regular semigroup and C (S) be the least self conjugate full subsemigroup. Define a relation ρ on S byaρbu,v∈C (S) s.t. u u=aa ,uu =bb ,v v=b b,vv =a a,b=uav.Denote by G the permutation group of S/ρ and P(G) the set of all nonempty subsets of G. Let τ be a mapping from S to P(G) satisfying:(1)s 1,s 2∈S,(s 1τ)(s 2τ)(s 1s 2)τ;(2)s∈S,{g -1 ∈G:g∈sτ}s τ;(3)1τ -1 =C (S). Then T={(s,g)∈S×G:g∈sτ} is a C unitary cover of S.A nonempty subset H of a regular semigroup S is permissible if a b,ab ∈C (S) and ua,bv∈H for all a,b∈H,u,v∈C (S). Denote by C(S) all permissible subsets of S (note that C(S) is an inverse semigroup).Let S be a regular semigroup and G a group. If θ:g→θ g is a prehomomorphism from G to C(S) such that ∪ g∈G θ g=S, then T={(s,g)∈S×G:s∈θ g} is a C unitary cover of S and T/σG. Conversely, every C unitary cover of S can be so constructed.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
1998年第4期24-29,共6页
Journal of Lanzhou University(Natural Sciences)
基金
广东省博士专项基金
甘肃省中青年基金