摘要
针对机载传感器不能在作战时限内获取目标参数从而造成属性匹配过程失败的情况,提出了一种基于在线修正时间序列预测方法的UCAV粗决策模型。通过对以往时刻传感器数据的时间序列分析,建立最优自回归移动平均模型,根据延迟获取的数据,运用在线修正预测方法,完成对未来时刻传感器数据的预测及预测值的修正,作为粗糙集决策属性匹配的输入完成决策过程。通过对UCAV目标威胁估计实例的分析可知,该模型能在决策数据的基础上,根据时间序列预测值,提取出所有条件下的决策规则,给出有效决策建议。
To deal with the matter that airborne sensors may not acquire targets" parameters in combat time limitation, which leads to failure of attributes matching, a rough decision - making model for UCAV based on on - hne correction time series forecasting method is presented. With the time series analysis results of sensors'data in previous time, the optimal autoregressive moving average model is constructed. With the acquired delayed data, sensors "data in future time, which would be used as an input to the process of attributes matching , are predicted and the data are corrected by on - line correction prediction method. As the analysis of an example of target threat assessment for UCAV shows, the decision - making model can extract rules in all conditions and present efficient decision making adviees.
出处
《空军工程大学学报(自然科学版)》
CSCD
北大核心
2010年第1期5-10,共6页
Journal of Air Force Engineering University(Natural Science Edition)
基金
国家"863"计划资助项目(2008AAXX50703)
空军工程大学教研新星培养计划基金资助项目
空军工程大学优秀博士学位论文创新基金资助项目(BC08002)
关键词
在线修正
时间序列预测
粗糙集
决策
自回归移动平均
time series forecasting
rough sets
decision - making
autoregressive moving average
on - line correction