摘要
本文在对传统的遗传算法(GA)及BP网络进行一系列改进的基础上,将遗传算法与BP网络进行了有机的结合,提出了一种交叉训练算法。该算法的核心在于将BP网络训练过程划分为若干子步,使遗传进化机制和BP网络训练机制步进交叉进行,来保证网络训练的成功率和快速向全局最优区域逼近的目的。把该算法应用到松花江依兰、佳木斯江段封河、开河日期预报中,取得了良好的效果。
This paper puts forward a novel alternately training algorithm that combines the genetic algorithm (GA) with the BP neural network and a series of improvements on the traditional algorithms. The key of this algorithm is to partition a BP training process into several steps, so that GA operation and BP training can be performed alternately step by step, aiming at a final success of the training and a fast convergence toward global optimization. Application of the algorithm to the Yilan and Jiamusi reaches of Songhuajiang River shows a high accuracy in forecasting the freeze-up and break-up dates.
出处
《水力发电学报》
EI
CSCD
北大核心
2010年第1期76-79,43,共5页
Journal of Hydroelectric Engineering
基金
国家公益性行业专项经费资助项目(200701006)
关键词
防洪工程
冰情预报
遗传BP算法
交叉训练
封河日期
开河日期
flood control works
ice forecasting
genetic and BP algorithms
alternately training
freeze-up date
break-up date.