摘要
本文通过对李代数理想格的讨论,研究李代数的结构。根据理想格满足的一些条件,给出李代数的一簇子类Rn,n≥1,Rn中元素称为n-RDS型李代数。本文刻划了Rn的一些特性,并得到了关于特征零代数闭域F上有限维n-RDS型李代数的一系列结果,特别是,对n≥2决定了所有n-RDS型李代数;证明了:对任何正整数N,存在N维可解1-RDS型李代数。
The structure of a Lie algebra is discussed by looking into the lattice of its ideals. From this point of view, a class of Lie algebras,called n- RDS type Lie algebras, is introduced.A series of results are obtained when the base field is characteristic zero and algebraically closed.Particularly,in the case of n≥2,all the n-RDS type Lie algebras are constructed. Also the existence theorem of solvable RDS type Lie algebras is presented.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1998年第4期10-16,共7页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金!19771061