期刊文献+

一类不稳定的非线性Schrdinger方程的有限差分方法

Finite difference method for a class of nonlinear Schro ¨dinger equation
下载PDF
导出
摘要 研究了一类不稳定的非线性Schro¨dinger方程iux+utt+εuxt+f(|u|2)u=0(ε1,x∈[0,1],0≤t≤T)的初边值问题,构造了该问题的一类无条件稳定的差分格式,利用非线性函数的有界延拓法与能量估计法得到了差分格式的误差估计,证明了差分格式的收敛性与稳定性. This paper considers the initial boundary value problem of a class of unstable nonlinear Schro ¨dinger equations i u x+u tt +εu xt +f(|u| 2)u=0(ε1,x∈,0≤t≤T) .For this purposes,a class of the unconditionally stable difference scheme is established.By using the bound extension method of nonlinear function and energy estimate method,the error estimate of the finite difference scheme is presented,the convergence and stability of the finite difference scheme are proved.
作者 杜丽莉
出处 《陕西师大学报(自然科学版)》 CSCD 北大核心 1998年第4期29-32,共4页 Journal of Shaanxi Normal University(Natural Science Edition)
关键词 非线性 差分格式 收敛性 薛定谔方程 有限差分法 nonlinear Schro ¨dinger equations finite difference scheme convergence

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部