摘要
利用实空间重正化群(real space renormaligation group,RSRG)方法讨论自旋玻璃的3种不动点及临界指数,所得结果与严格解存在一定差距.大量研究表明,若选取较大的Kadanoff集团,则结果会好一些,但随着集团格点数的增大,计算量也大为增加,而研究没有提到其它更有效的修正方法.通过考虑能级和温度对重正化变换中集团概率的影响,在RSRG中引入权重因子重新推导重正化变换,得到新的不动点与临界指数,将其与修正前结果相对比,发现更接近严格解.
Spin glass model is discussed with real space renormalization group(RSRG) method,three kinds of fixed points and critical indices are deduced.Since a gap exists between the solution and the exact solution,revision is required.Some literatures indicate that it approaches exact solution if Kadanoff clusters are constructed with lager points,but the numeration increases greatly at the same time.Then a more efficient method is needed.The spin glass model is discussed with RSRG method by introducing an energy and temperature dependent weight factor.The new solution and the corresponding critical indices approach the exact solution more than those of before revision.
出处
《中北大学学报(自然科学版)》
CAS
北大核心
2009年第6期495-498,共4页
Journal of North University of China(Natural Science Edition)
基金
山西省自然科学基金资助项目(200611010)
关键词
自旋玻璃
重正化群变换
权重因子
临界指数
spin glass
counter change of renormalization group
weight factor
critical indices