期刊文献+

自旋玻璃重正化群解的修正 被引量:1

Revision of Renormalization Group Solution for Spin Glass
下载PDF
导出
摘要 利用实空间重正化群(real space renormaligation group,RSRG)方法讨论自旋玻璃的3种不动点及临界指数,所得结果与严格解存在一定差距.大量研究表明,若选取较大的Kadanoff集团,则结果会好一些,但随着集团格点数的增大,计算量也大为增加,而研究没有提到其它更有效的修正方法.通过考虑能级和温度对重正化变换中集团概率的影响,在RSRG中引入权重因子重新推导重正化变换,得到新的不动点与临界指数,将其与修正前结果相对比,发现更接近严格解. Spin glass model is discussed with real space renormalization group(RSRG) method,three kinds of fixed points and critical indices are deduced.Since a gap exists between the solution and the exact solution,revision is required.Some literatures indicate that it approaches exact solution if Kadanoff clusters are constructed with lager points,but the numeration increases greatly at the same time.Then a more efficient method is needed.The spin glass model is discussed with RSRG method by introducing an energy and temperature dependent weight factor.The new solution and the corresponding critical indices approach the exact solution more than those of before revision.
机构地区 中北大学理学院
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2009年第6期495-498,共4页 Journal of North University of China(Natural Science Edition)
基金 山西省自然科学基金资助项目(200611010)
关键词 自旋玻璃 重正化群变换 权重因子 临界指数 spin glass counter change of renormalization group weight factor critical indices
  • 相关文献

参考文献10

  • 1Parisi G, Petronzio R, Rosati F. Renormalization group approach to spin glass systems [J]. Eur. Phys. J. B, 2001, 21 (4) : 605-609.
  • 2Hooyberghs J, Vanderzande C. Real-space renormalization for reaction-diffusion system[J]. Phys A. Math Gen, 2000,33(5) : 907-919.
  • 3Nobre F D. Real-space renormalization-group approaches for two-dimensional Gaussian Ising spin glass[J]. Physics Letter A, 1999, 250(1-3) :163-169.
  • 4Pezzella U, Coniglio A. Spin glasses and frustrated percolation., a renormalization group approach[J]. Physica A, 1997, 237(3):353-362.
  • 5Gong P, Chen Y F, Zhou X, et al. Kadanoff blocks and renormalization group approach to two-dimenSional lattice [J]. J. Wuhan Univ. (Nat. Sci. Ed. ),2003,49(1):71-74.
  • 6Plischke M, Zobin D. Renormalization group calculations for two dimensional disordered Ising models [J]. J. Phys. C: Solid State Phys, 1977, 10(28):4751-4759.
  • 7West Bruce J. Comments on the renormalization group, scaling and measure of complexity[J]. Chaos, Solitons and Fraetals, 2004,20(1): 33-44.
  • 8Zhao X, Zhou Y S, Wang W. To deal with tetragonal ising model by using renormalization group method[J] Journal of Capital Normal University, 1997, 18(2) : 37-43.
  • 9陈芝得.玻璃系统零点剩余熵的一种新解释[J].广州师院学报(自然科学版),1995,16(1):91-96. 被引量:1
  • 10Kawashima N, Young A P. Phase transition in the three-dimensional ± J ising spin glass[J]. Phys. Rev. B,1996, 53(2): R484-R487.

同被引文献13

  • 1王宗笠,李晓寒.Ising模型集团大小对重正化结果影响的分析[J].安徽大学学报(自然科学版),2005,29(4):50-53. 被引量:3
  • 2章国顺.对《二维六角形晶格伊辛模型的重正化群解》一文的进一步计算[J].大学物理,2006,25(8):24-25. 被引量:3
  • 3Hooyberghs J, Vanderzande C. Real-space renormali- zation for reaction-diffusion system[J]. Phys A: Math Gen, 2000, 33(5): 907-919.
  • 4Degenhard A. Non-perturbative real-space renormali- zation group scheme[J]. Phys A: Math Gen, 2000, 33(5) : 617-630.
  • 5Abdusalam H A. Renormalization group method and Julia sets[J]. Chaos. Solitons and Fractals, 2001, 12 (2) : 423-428.
  • 6Kubo R. Statistical mechanics[M]. North-Holland Publishing Company Amsterdam, 1965: 303.
  • 7West. Bruce J. Comments on the renormalization group, scaling and measure of complexity[J]. Chaos. Solitons and Fractals, 2004, 20(1): 33-44.
  • 8Ma S. Modem theory of critical phenomena[M]. New York: W. A. Benjamin, 1976.
  • 9Zhao Xin, Zhou Yunson. To deal with tetragonal ising model by using renormalization group method [J]. Journal of Capital Normal University, 1997, 18 (2) : 37-43.
  • 10沈抗存.关于二维伊辛模型严格解中的一个问题[J].湖南大学学报,1990,17(3):81-87. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部