期刊文献+

一种复合KPCA故障诊断模型 被引量:3

A Compound KPCA Fault Diagnosis Model
下载PDF
导出
摘要 核函数主元分析(KPCA)故障诊断方法中核函数的具体形式对诊断性能的影响非常大.针对核函数具体形式选取问题,基于径向基高斯核函数和一类特定多项式核函数,构造出一种新的复合核函数模型.对模型的构造方法进行了论述,给出了具体的故障诊断算法的实现步骤.该模型在兼顾全局信息提取的前提下,保证了局部灵敏度,具有很好的拟合能力.通过与其他算法仿真比较表明所提出方法不但可以避免对模型的事先假设,且具有较高的故障诊断效率. The concrete form of kernel function in the KPCA fault diagnosis model has great impact on the diagnosis performance.A new compound kernel function model is presented based on RBF Gaussian kernels and polynomial kernels.The construction of the model and the implementation steps of the fault diagnosis algorithms are given.In the condition of considering the global information the model guarantees partial sensitivity and good fitting ability.Compared with other KPCA algorithms' simulation results,the proposed model not only avoids prior hypothesis but also has higher fault diagnosis efficiency.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2009年第6期555-560,共6页 Journal of North University of China(Natural Science Edition)
基金 教育部科学技术研究重点项目(206041)
关键词 核函数 主元分析 故障诊断 复合核函数 kernel function principal component analysis fault diagnosis compound kernel function
  • 相关文献

参考文献12

  • 1Pentland A, Moghaddam B, Starner T, et al. View-based and modular eigenspaces for face recognition[C]. Proc IEEE Computer Society Conference On Computer Vision and Pattern Recognition, Seattle, 1994:84-91.
  • 2Dong D, Meavoy T J. Batch tracking via nonlinear principal component analysis[J]. AICHE Jourmal, 1996, 42(8): 2199-2208.
  • 3Sehlkopf B, Smola A, Muller K. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998,10(5) : 1299-1399.
  • 4Shaw-Taylor J, Cristianini N. Kernel methods for pattern analysis[M]. London: Cambridge University Press, 2004.
  • 5John S T, Nello C. Kernel methods for pattern analysis[M]. England: Cambridge University Press, 2004.
  • 6Vapnik V, Chapelle O. Bounds on error expectation for support vector machines[J]. Neural Computation, 2000,12 (9):2013-2036.
  • 7Scholkpf B. Support Vector Learning[D]. Berlin: Berlin University, 1997.
  • 8Smola A J. Learning with kernels[D]. Berlin: Technical University of Berlin, 1998.
  • 9Baesens B, Viaenc S, Van G T, et al. An empirical assessment of kernel type performance for least squares support machine classification[C]. Proceedings of Fourth Internaional Conference on Knowledte-Based Intelligent Engineer System and Allied Technologyis, Brighton, 2000 : 313-316.
  • 10WITTENIH,FRANKE.数据挖掘:实用机器学习技术[M].董琳,邱泉,等译.北京:机械工业出版社,2006.

共引文献4

同被引文献23

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部