期刊文献+

基于特征加权C均值聚类算法的案例索引和检索 被引量:4

CASE INDEXING AND RETRIEVAL BASED ON CLUSTERING ALGORITHM OF WEIGHTED FEATURE C-MEANS
下载PDF
导出
摘要 一个成功的案例推理系统高度取决于如何设计出一个精确并且高效的案例检索机制。提出用特征加权C均值聚类算法(WF-C-means)把源案例中的初始案例分成几类。在WF-C-means的分类结果基础上提出了案例索引方案。实验表明,研究的结果对于一个现实的案例推理系统非常有用。 A successful case-based reasoning (CBR) system highly depends on how to design an accurate and efficient case retrieval mechanism. In this article we propose a weighted feature C-means clustering algorithm (WF-C-means) to Classify all primary cases in case base into several clusters. Based on the clustering result of WF-C-means, we present a cluster-based case indexing scheme. Through our experiments, it is shown that the results of this research are very useful for an actual CBR system.
作者 刘长征 董冬
出处 《计算机应用与软件》 CSCD 2010年第2期111-114,共4页 Computer Applications and Software
基金 黑龙江省青年专项资金资助(QC04C44)
关键词 案例推理 案例索引方案 C均值聚类算法 特征加权 Case-based reasoning Case indexing scheme C-means clustering algorithm Feature weighing
  • 相关文献

参考文献6

  • 1Watson I, Marir F. Case-based Reasoning:A Review. The Knowledge Engineering Review 9,1999:355 - 381.
  • 2Kolodner J L. Case-Based Reasoning. Morgan Kaufmann, San Francisco ,2002.
  • 3Guttman A. R-trees:A Dynamic Index Structure for Spatial Searching [ C]//Proceedings of the 1984, ACM SIGMOD International Conference on Management of Data, 1984:47 - 57.
  • 4Mcqueen J. Some Mehtods for Classification and Analysis of Multivariate Observations [ C ]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1996:281 - 297.
  • 5Newman D J, Hettich S, Blake C L, et al. UCI Repository of Machine Learning Databases. 1998. http://www. ics. uci. edu/- MLSummary.html.
  • 6Ahmad A, Dey L. A Feature Selection Technique for Classificatory Analyis. Pattern Recognition Letters 26,2005:43 - 56.

同被引文献48

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部