摘要
一个成功的案例推理系统高度取决于如何设计出一个精确并且高效的案例检索机制。提出用特征加权C均值聚类算法(WF-C-means)把源案例中的初始案例分成几类。在WF-C-means的分类结果基础上提出了案例索引方案。实验表明,研究的结果对于一个现实的案例推理系统非常有用。
A successful case-based reasoning (CBR) system highly depends on how to design an accurate and efficient case retrieval mechanism. In this article we propose a weighted feature C-means clustering algorithm (WF-C-means) to Classify all primary cases in case base into several clusters. Based on the clustering result of WF-C-means, we present a cluster-based case indexing scheme. Through our experiments, it is shown that the results of this research are very useful for an actual CBR system.
出处
《计算机应用与软件》
CSCD
2010年第2期111-114,共4页
Computer Applications and Software
基金
黑龙江省青年专项资金资助(QC04C44)
关键词
案例推理
案例索引方案
C均值聚类算法
特征加权
Case-based reasoning Case indexing scheme C-means clustering algorithm Feature weighing