期刊文献+

利用支持向量机的摩擦模型参数辨识 被引量:2

Research on the Parameter Identification of Friction Model Based on Support Vector Machine
下载PDF
导出
摘要 以Tustin摩擦模型为参数辨识对象,提出一种基于支持向量机算法的摩擦模型参数辨识的方法.构建训练样本并选取适当的支持向量机模型,选择具有较好泛化能力的径向基核函数和具有稀疏性特点的ε不敏感损失函数,以求解最优化问题,得到最优解.以某直流电机高精度位置伺服系统为对象,用辨识得到的参数估计值设计摩擦力矩的补偿环节,对系统进行补偿,仿真结果表明,算法的辨识精度比较高. A method for the parameter identification of the friction model based on support vector machine is proposed with Tustion friction models as the object for parameter identification. The optimum solutions are obtained by solving the optimization problem where training samples are constructed, the appropriate model of support vector machine (SVM for short) is selected, and .the radial kernal function with better generalization ability and E-insensitive loss function with the sparse characteristics are selected as well. With a DC motor high-precision position servo system as the research object, the system is compensated by using the estimated value of parameters to design the compensation aspect of friction torque. The simulation results show that the algorithm has high recognition accuracy.
作者 王洪如 刘强
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2010年第2期132-135,共4页 Journal of Huaqiao University(Natural Science)
基金 福建省自然科学基金资助项目(E0510023) 福建省高校新世纪优秀人才计划项目(E0510023)
关键词 摩擦模型 参数辨识 支持向量机 伺服系统 friction model parameter identification support vector machine servo system
  • 相关文献

参考文献15

  • 1ARMSTRONG B, DUPONT P, CANUDAS C, et al. A survey of models, analysis tools and compensation methods for the control of machines with friction[J]. Automatica, 1994,30(7): 1083-1138.
  • 2FRIEDLAND B, PARK Y J. On adaptive friction compensation[J]. IEEE Transactions on Automatic Control, 1992, 37(10) : 1609-1612.
  • 3PHILLIPS S M,BALLOU K R. Friction modeling and compensation for an industrial robot[J]. Journal of Robotic Systems, 1993,10(7):947-971.
  • 4WIT C C, OISSON H, ASTROM K J, et al. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control, 1995,40 (3) : 419-425.
  • 5FEEMSTER M, VEDAGARBHA P, DAWSPM D M, et al. Adaptive control techniques for friction compensation[J].Mechatronics, 1998,3(21/26) : 1488-1492.
  • 6LEE S W,KIM J H. Friction identification using evolution strategies and robust control of positioning tables[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1999,121(4) : 619-624.
  • 7LIAO T L,CHIEN T I. An exponentially stable adaptive friction compensator[J]. IEEE Transactions on Automatic Control, 2000,45 (5) : 977-980.
  • 8YANG S, TOMIZUKA M.Adaptive pulse width control for precise positioning under influence of sticktion and coulomb frieiton[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1988,110 (43) : 221-227.
  • 9PARK E C,LIM H,CHOI C H. Position control of X-Y table at velocity reversal using presliding friction characteristics[J]. IEEE Transactions on Control Systems Technology, 2003,11 (1) : 24-30.
  • 10MOREL G, IAGMEMMA K, DUBOWSKY S. The precise control of manipulators with high joint-friction using base force/torque sensing[J]. Automatiea, 2000,36 (7) : 931-941.

二级参考文献26

  • 1朱全民.非线性系统辨识[J].控制理论与应用,1994,11(6):641-652. 被引量:18
  • 2李人厚,张平安.关于模糊辨识的理论与应用实际问题[J].控制理论与应用,1995,12(2):129-137. 被引量:19
  • 3ALCKSANDROVSKII, N. M. and DEICH, A. M.. Determination of Dynamic Characteristic of Nonlinear Objects [ J ]. Automat. Remote Control,1968, (29): 142 - 160
  • 4TITTERINGTON, D. M. and KITSOS, C.P.. Recent Advances in Nonlinear Experimental Design[J]. Technometrics, 1989, (31) :49 - 60
  • 5BILLINGS, S.A. Identification of Nonlinear System - A Survey. Proc[J]. IEE. 1980,127 (6):272-285
  • 6HUNG, G. and STARK, L. The Kernel Identification Method- Review of Theory, Calculation, Application and Interpretation [ J ]. Math Biosci.,1977, (37): 135 - 170
  • 7ANORLD, C. R . and NARENDRA, K. S.. The Characterization and Identification of Systems[ R]. Technical Report 471, Harvard University. 1965
  • 8BILLINGS, S. A., and etc. Properties of Neural Networks with Applications to Modeling Nonlinear Dynamical Systems[J]. Int. J. Control. 1992,55(1): 193 - 224
  • 9ZHANG Q. Wavelet networks[J]. IEEE Trans. Neural Networks,1992,3(6) :889 - 898
  • 10BAHAVIK R B and STEPHANOPOULOS G. Wave- net:a multiresolusion, hieraehical neural network with localized learning[J]. AIChE Jounal,1993,39(1) :57 - 81

共引文献32

同被引文献23

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部