摘要
研究一类具有偏差变元的二阶微分方程x″(t)+f(x′(t))+h(x(t))x′(t)+g(t,x(t-τ(t)))=p(t)的周期解的存在性问题.通过应用Schwarz不等式,Minkowski不等式,以及重合度理论,在满足一定条件下,得到方程至少存在一个T-周期解的新结果,且其周期解存在性的充分条件并不要求h(x)是有界函数.
In this paper, we study the problem on the existence of periodic solutions for a class of second order differential equations with a deviating argument x''(t) +f(x' (t)) +h (x(t))x' (t) +g(t, x(t-τ(t) ) ) = p(t). By means of Schwarz' s inequality and Minkowski's inequality and the coincidence degree theory, a new result on the existence of periodic solutions for the equations is obtained under some conditions. In the sufficient conditions of the existence of periodic solutions for the equations, the bounded function h(x) may not be required.
出处
《华侨大学学报(自然科学版)》
CAS
北大核心
2010年第2期235-240,共6页
Journal of Huaqiao University(Natural Science)
基金
福建省自然科学基金资助项目(Z0511026)
关键词
微分方程
周期解
重合度
偏差变元
存在性
differential equation
periodic solution
coincidence degree
deviating argument
existence