期刊文献+

一类二阶微分方程周期解的存在性 被引量:3

Existence of Periodic Solutions for a Class of Second Order Differential Equations
下载PDF
导出
摘要 研究一类具有偏差变元的二阶微分方程x″(t)+f(x′(t))+h(x(t))x′(t)+g(t,x(t-τ(t)))=p(t)的周期解的存在性问题.通过应用Schwarz不等式,Minkowski不等式,以及重合度理论,在满足一定条件下,得到方程至少存在一个T-周期解的新结果,且其周期解存在性的充分条件并不要求h(x)是有界函数. In this paper, we study the problem on the existence of periodic solutions for a class of second order differential equations with a deviating argument x''(t) +f(x' (t)) +h (x(t))x' (t) +g(t, x(t-τ(t) ) ) = p(t). By means of Schwarz' s inequality and Minkowski's inequality and the coincidence degree theory, a new result on the existence of periodic solutions for the equations is obtained under some conditions. In the sufficient conditions of the existence of periodic solutions for the equations, the bounded function h(x) may not be required.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2010年第2期235-240,共6页 Journal of Huaqiao University(Natural Science)
基金 福建省自然科学基金资助项目(Z0511026)
关键词 微分方程 周期解 重合度 偏差变元 存在性 differential equation periodic solution coincidence degree deviating argument existence
  • 相关文献

参考文献8

  • 1张莉,王全义.具有偏差变元的二阶中立型泛函微分方程周期解[J].华侨大学学报(自然科学版),2007,28(4):437-440. 被引量:1
  • 2POURNAKI M R, RAZANI A. On the existence of periodic solutions for a class of generalized forced lienard equations[J].Appl Math Lett, 2007,20(3) : 248-254.
  • 3WANG Wei-bing, LUO Zhi-guo. Positive periodic solutions of second-order differential equations[J]. Appl Math Lett, 2007,20(3) : 266-271.
  • 4LIU Bing-wen, HUANG Li-hong. Periodic solutions for a kind of Rayleigh equation with a deviating argument[J]. J Math Anal Appl, 2006,32 (2) : 491-500.
  • 5杜波,鲁世平.一类具偏差变元的二阶微分方程周期解[J].数学研究,2007,40(1):16-21. 被引量:9
  • 6LU Shi-ping, GE Wei-gao. Sufficient conditions for the existence of periodic solutions to some second order differential equations with a deviating argument[J].J Math Anal Appl,2005,308(2): 393-419.
  • 7LU Shi-ping, GE Wei-gao. Existence of positive solutions for neutral population model with multiple delays[J].Appl Math Comput, 2004,153(3) : 885-902.
  • 8GAINES R E, MAWHIN J L. Coincidence degree and nonlinear differential equation[M]. Berlin: Springer-Verlag, 1977:40-60.

二级参考文献14

  • 1张莉,王全义.一类二阶中立型泛函微分方程周期解的存在性[J].华侨大学学报(自然科学版),2006,27(2):126-129. 被引量:2
  • 2郭大钧.非线性泛函分析[M].济南:山东科学技术出版社,2002.193~194
  • 3Wang G Q. A priori bounds for periodic solutions of a delay Rayleigh equation,Applied Mathematics Letters, 1999,12:41--44.
  • 4Iannacci R, Nkashama M N. On periodic solutions of forced second order differential equations with a deviating argument. Lecture Notes InMath. , 151 ,Springer-Verlag, 1984,224-- 232.
  • 5Li Yongkun. Periodic solutions of Lienard equations with deviating arguments ,J. Math Research and Exposition, 1998,18:565--570.
  • 6Lu Shiping, Ge Weigao. Periodic solutions for a kind of Lienard equations with deviating arguments. J.Math. Anal. Appl. , 2004, 249:231--243.
  • 7Lu Shiping, Ge Weigao. Some new results on the existence of periodic solutions to a kind of Rayleigh equation with deviating arguments. Nonlinear Analysis, 2004, 56 : 501-- 514.
  • 8Gaines R, Mawhin J. Coincide Degree and Nonlinear Differential Equation. Berlin:Springer-Verlag,1977.
  • 9GAINS R E, MAWHIN J I.. Coincidence degree and nonlinear differential equation[M]. Berlin: Springer-Verlag, 1977: 1-100.
  • 10PETRYSHYN W V, YU Z S. Existence theorems for higher order nonlinear periodic boundary value problems[J]. Nonlinear Anal, 1982, 6(9):943-969.

共引文献8

同被引文献43

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部