摘要
在满足接触强度、弯曲强度和边界约束的条件下,建立了汽车主减速器优化设计数学模型,并通过神经网络方法拟合待求系数,应用遗传算法工具箱调用混合遗传算法寻求最优解,使求解过程得到简化,确保可靠地获得全局最优解。
Mathematical models for optimum design of automotive main reducer are built by satisfying the demand of contact strength, bending strength and boundary constraints. Meanwhile, undetennined modulus is simulated by means of neural networks. And hybrid genetic algorithm is selected from the genetic algorithm toolbox to seek optimal solutions, thus simplifying the solving process to ensure the obtaining of global optimal solution.
出处
《机械传动》
CSCD
北大核心
2010年第2期41-42,54,共3页
Journal of Mechanical Transmission
关键词
汽车主减速器
优化设计
遗传算法
神经网络
Automotive main reducer Optimum design Genetic algorithm Neural networks