期刊文献+

响应曲面法优化大肠杆菌XD-12发酵培养基的研究

Study on Optimization of Fermentation Medium of Escherichia coli XD-12 for Aminotransferase Production by Response Surface Methodology
下载PDF
导出
摘要 [目的]采用响应面法优化大肠杆菌XD-12发酵培养基,以提高转氨酶的转化得率。[方法]在单因素试验基础上,采用响应曲面法对菌种的发酵培养基进行了优化研究。[结果]最佳的培养基组成为:葡萄糖10.0 g/L,玉米浆28.3 ml/L,蛋白胨9.3g/L,MgSO_4 0.5g/L,NaCl 0.5g/L,pH值7.2,在此条件下,酶转化得率的预测最优值为93.8%,实际平均值为93.0%。[结论]模型能够较好地预测实际发酵情况,用于大肠杆菌发酵产酶培养基的优化是可行的。 [Objective]The research aimed to optimize the fermentation medium of E.coli XD-12 for amiontransferase production by response surface methodology,to enhance the yield of L-phenylalanine.[Method]Based on the single factor test,fermentation medium of Escherichia coli XD-12 for aminotransferase production was optimized by response surface methodology.[Result]The results showed that the composition of the optimal medium was glucose 10.0 g/L,corn steep liquor 28.3 ml/L,peptone 9.3 g/L,MgSO_4 0.5 g/L,NaCl 0.5 g/L,pH value 7.2.Under this condition,the maximum yield of L-phenylalanine was 93.8%as the predictive value and 93.0%as the practical value.[Conclusion] The model can better predict the real fermentation situation,and it is feasible to be used to optimize the fermentation medium of E.coli.
出处 《安徽农业科学》 CAS 北大核心 2009年第36期17892-17895,17932,共5页 Journal of Anhui Agricultural Sciences
基金 江苏省自然科学基金项目(BK2006237)
关键词 大肠杆菌 转氨酶 响应曲面法 发酵培养基 E.coli Aminotransferase Response surface methodology Fermentation medium
  • 相关文献

参考文献10

二级参考文献47

  • 1廖亚曦,王成国,刘金朝.应用响应面方法进行200km/h转向架阻尼器参数的优化研究[J].铁道机车车辆,2004,24(5):8-11. 被引量:1
  • 2[1]Elick S F,Vavara J.A kinetic and equilibrium analysis of the glutamic oxaloacetate transaminase mechanism[J].J Biol Chem,1962,237:2109-2122.
  • 3[2]Kiick D M,Cook P F.pH studies toward the elucidation of the auxiliary catalyst of pig heart aspartate aminotransferase[J].Biochemistry,1983,22:375-382.
  • 4[3]Hayashi H,Mizuguchi H,and Kagamiyama H.The imine-pyridine torsion of the pyridoxal 5-Phosphate schiff base of aspartate aminotransferase lowers its pKa in the unliganded enzyme and is crucial for the successive increase in the pKa during catalysis[J].Biochemistry,1998,37:15076-15085.
  • 5[4]Kondo K,Wakabayashi S,Yagi T,et al.The complete amino acid sequence of aspartate aminotransferase from Escherichia coli: sequence comparison with pig isoenzymes[J].Biochem.Biophys Res Commun,1984,122: 62-67.
  • 6[5]Kondo K,Wakabayashi S,Kagamiyama H.Structural studies on aspartate aminotransferase from Escherichia coli.Covalent structure[J].J Biol Chem,1987,262: 8648-8659.
  • 7[6]Mehta P K,Hale T I and Christen P.Aminotransferases:demonstration of homology and division into evolutionary subgroups[J].Eur J Biochem,1993,214:549-561.
  • 8[7]Jensen R A,Gu W.Evolutionary recruitment of biochemically specialized subdivisions of Family I within the protein superfamily of aminotransferases[J].J Bacteriol,1996,178: 2161-2171.
  • 9[8]Okamoto A,Kato R,Masui R,et al.An aspartate aminotransferase from an extremely thermophilic bacterium,Thermus thermophilus HB8[J].J Biochem (Tokyo),1996,119:135-144.
  • 10[9]John R A.Pyridoxal phosphate-dependent enzymes[J].Biochim Biophys Acta,1995,1248(2):81-96.

共引文献652

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部