期刊文献+

防范黑客入侵确保数据库安全探讨 被引量:7

The Way to Guard Against Hackers and Keep the Database Safe
下载PDF
导出
摘要 各种数据库应用系统中大量数据的安全问题、敏感数据的防窃取和防篡改问题,越来越引起人们的高度重视。普通的黑客从进入到退出一次数据攻击只需用不到10 s就可完成,这个时间对于数据库管理员来说无论如何都几乎不够。从三个层面上分析黑客入侵成功原因,对如何确保数据库的安全进行了探讨。 People begin to pay much attention to the safety of different kinds of database application system, including the safety of the immense amount of data, the protecting of sensitive data from being stolen and distorted. It takes an ordinary hacker no more than 10 seconds to attach the database once. While with the 10seconds hardly can a database administrator find the attack. This text analyzes hackers' successful attack from three aspects, and makes a discussion on the way to ensure the safety of the database.
作者 冉黎
出处 《电脑开发与应用》 2010年第3期73-75,共3页 Computer Development & Applications
关键词 数据库安全 黑客入侵 防范入侵 the safety of database, hacker's attack, protect database from invading into
  • 相关文献

参考文献6

  • 1徐海祥.基于支持向量机方法的图像分割与目标分类[D].武汉:华中科技大学,2006.
  • 2张翔.支持向量机及其在医学图像分割中的应用[D].武汉:华中科技大学,2005.
  • 3徐海祥,喻莉,朱光喜,张翔,田金文.基于支持向量机的磁共振脑组织图像分割[J].中国图象图形学报,2005,10(10):1275-1280. 被引量:25
  • 4史鑫,罗述谦.支持向量机在医学图像分割中的应用[J].北京生物医学工程,2007,26(3):249-252. 被引量:4
  • 5William S Noble. What is a Support Vector Machine [J]. Nature Biotechnology, 2006,24(4) : 1565-1567.
  • 6Pikaz Z, Averbuch A. Digital Image Thresholding Based on Topological Stable State [J ]. Pattern Recognition, 1996,29(5) : 829-843.

二级参考文献22

  • 1林瑶,田捷,张晓鹏.基于模糊连接度的FCM分割方法在医学图像分析中的应用[J].中国体视学与图像分析,2001,6(2):103-108. 被引量:17
  • 2罗述谦 周果宏.医学图像处理与分析[M].北京:科学出版社,2003.1-2.
  • 3Reddick W E, Glass J O, Cook E N, et al. Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks [ J ]. IEEE Transactions on Medical Imaging, 1997, 16(6): 911 ~918.
  • 4Vapnik V. The Nature of Statistical Learning Theory [M ]. New York: Springer-Verlag, 1995.
  • 5Burges C. A tutorial on support vector machines for pattern recognition [ J ]. Data Mining and Knowledge Discovery, 1998,2 (2):121 ~ 167.
  • 6Osuna E, Freund R, Girosi F. Training support vector machines: An application to face detection [ A ]. In: Proceedings of Computer Vision and Pattern Recognition [ C ], San Juan, Puerto Rico, 1997:130 ~ 136.
  • 7Zhao Q, Principe J. Support vector machines for SAR automatic target recognition [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37 (2): 643 ~ 654.
  • 8Lin C F, Wang S D. Fuzzy support vector machines [ J]. IEEE Transactions on Neural Networks, 2002, 13 (2): 464 ~ 471.
  • 9Genton M G. Classes of kernels for machine learning: a statistics perspective [ J]. Journal of Machine Learning Research, 2001,2(2): 299 ~312.
  • 10Weston J, Watkins C. Multi-class Support Vector Machines [ R ].Technical Report, CSD-TR-98-04, Egham, UK: University of London, 1998:1 ~9.

共引文献27

同被引文献11

引证文献7

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部