期刊文献+

带钢表面缺陷图像的小波阈值降噪研究 被引量:2

Wavelet threshold denoising for steel strip surface defect image
下载PDF
导出
摘要 以典型带钢表面缺陷图像为例,采用小波阈值降噪方法研究带钢表面缺陷图像的小波阈值降噪规律,并论述了带钢表面缺陷图像阈值的选择和小波基的选取。结果表明,图像经过小波变换后具有低熵性、多分辨率和选基灵活性等特点,使得小波阈值降噪提高了图像的信噪比、改善图像的质量,并且增强图像的清晰度。 Taking typical strip surface defect images as an example, this paper studies the methods and rules of steel strip surface defect image denoising based on wavelet threshold, and discusses the threshold selection and mother wavelet selection. The results show that wavelet threshold denoising can improve the image PSNR, quality, and clarity because wavelet transform has low entropy, multiresolution and wavelet base flexibility.
出处 《武汉科技大学学报》 CAS 2010年第1期38-42,共5页 Journal of Wuhan University of Science and Technology
基金 武汉市科技攻关基金资助项目(200910321100)
关键词 带钢表面缺陷 小波 阈值 降噪 steel strip surface defect wavelet threshold denoising
  • 相关文献

参考文献10

二级参考文献18

共引文献140

同被引文献18

  • 1张旭明,徐滨士,董世运.用于图像处理的自适应中值滤波[J].计算机辅助设计与图形学学报,2005,17(2):295-299. 被引量:159
  • 2隆刚,肖磊,陈学佺.Curvelet变换在图像处理中的应用综述[J].计算机研究与发展,2005,42(8):1331-1337. 被引量:37
  • 3龙奕,尹忠科,王建英,李恒建.自适应Bandelet框架及其在图像去噪中的应用[J].计算机工程与应用,2008,44(1):69-71. 被引量:5
  • 4彭怡书.带钢表面缺陷图像脉冲与高斯噪声的滤除研究.沈阳:东北大学,2011.
  • 5Donoho D. Compressed sensing. IEEE Trans, on lnfoxanation Theo- ~-y,2006 ; 52(4) : 1289--1306.
  • 6Candes E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory, 2006;52(2) : 489--509.
  • 7Candes E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math, 2006 ;59 ( 8 ) : 1207--1223.
  • 8Tavakoli A, Pourmohammad A. Image denoising based on com- pressed sensing. International Journal of Computer Theory and Engi- neering, 2012; 4(2): 266--269.
  • 9Zhang Shunli. Compressed sensing method application in image de- noising. International Journal of Signal Processing, hnage Process- ing and Pattern Recognition. 2015 ; 8( 1 ) :203--212.
  • 10Alonso M T, Dekker P L, Mallorqui J J. A novel strategy for radar imaging based on compressive sensing. IEEE Trans. Geoscience and Remote Sensing, 2010 ;48 (12) : 4285---4295.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部