期刊文献+

基于灰色理论的车辆分类统计与流量预测

Classification and Statistics on Vehicle and Traffic Forecast Based on Gray System
下载PDF
导出
摘要 在灰色理论基础上提出了一种自动车型识别与流量预测技术。该技术实现可分为三个步骤:第一步,测量车辆的三维信息,获得车辆的长、宽、高度特征;第二步,利用灰色关联分析对车辆进行分类识别;第三步,建立一阶单变量车辆预测模型即GM(1,1),用于有关部门统计指标的预测。实验表明,该方法在车型识别中,具有比较高的识别精度,而灰色预测模型较传统的预测方法更具科学性与实用性。 A technology of vehicle model recognition and traffic forecast based on gray system is introduced. The tech- nology could be divided into three major steps: firstly, measuring the three-dimensional information of vehicle, obtain the features of length, width and height. Secondly, classifying and recognizing vehicle by gray correlation analysis, thirdly, es- tablishing a first-order single variable traffic forecast model, which is gray early warning model (GM(1,1)). Experiment result indicated that the novel method obtained high identification precision in vehicle model recognition, and compared with traditional forecasting methods, the GM(1,1) is more scientific and practical.
作者 袁理
出处 《计算机与数字工程》 2010年第2期130-135,共6页 Computer & Digital Engineering
关键词 车型识别 灰色理论 灰色关联分析 GM(1 1) vehicle model identification, gray theory, gray correlation analysis, GM(1,1)
  • 相关文献

参考文献12

  • 1Pan Wenmin, Kuah Geok K, Su Shilin, et al. Automatic vehicle classification system[C]//Proceedings of the 2nd International Conference on Applications of Advanced Technologies in Transportation Engineering. Minneapolis, MN, USA, 1991.
  • 2M Tomizuka. Automated Highway Systems: An Intelligent Transportation System for the Next Century[J]. IEEE International Symposium on Industrial Electronics, 1997(1) : 124.
  • 3Micchalopoulos P G. Vehicle Detection Through Video Image Processing: AUTOSCOPE System[J]. IEEE Transactions on Vehicular Technology, 1991,40(1) :21229.
  • 4J Versavel, et al. Camera and Computer Aided Traffic Sensor[C]//IEEE the 2nd International Conference on Road Traffic Monitoring, 1989.
  • 5M Taka too, et al. Traffic Flow Measuring System Using Image Processing[J]. SHE, 1989(1) : 119021197.
  • 6王久增,谷振楠,郑义.自动跟踪控制不停车混合收费系统的应用[J].中国交通信息产业,2004(10):93-95. 被引量:2
  • 7Hansen L, Salamon P. Neural network ensemble[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990,2(10) :993-10014.
  • 8葛广英.基于SVM的车型检测和识别算法[J].计算机工程,2007,33(6):6-8. 被引量:15
  • 9杨小敏,何小海,陶德元.智能交通的车型识别[D].成都:四川大学电子信息学院,2003.
  • 10Andrew H S L, George S K, Nelson H C, et al. Vehicle type classification from visual2based dimension estimation[J]. IEEE Intelligent Transportation Systems Conference Proceedings2Oakland (CA), 2001,25 (29) : 201.

二级参考文献17

  • 1杨晓敏,吴炜,黎涛,何小海.基于Gabor变换和支持向量机的车牌字符识别算法[J].四川大学学报(工程科学版),2005,37(5):130-134. 被引量:17
  • 2黄敬雄,谢维信,黄建军,李天泉.基于模糊神经网络的目标识别[J].西安电子科技大学学报,1997,24(1):72-77. 被引量:5
  • 3Brandon J R, Howarth M S, Searcy S W. A Neural Networks of Carrot Tip Classification[J]. ASAE Paper, 1990, 90(7): 549.
  • 4Abou-Nasr M A, Sid-Ahmed M A. Fast Learning and Efficient Memory Utilizition with a Prototype Based Neuron-Classifier[J]. Pattern Recognition, 1995, 79(28): 581-593.
  • 5李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004..
  • 6杨小敏,何小海,陶德元.智能交通的车型识别[D].成都:四川大学电子信息学院,2003.
  • 7Andrew H S L, George S K, Nelson H C, et al. Vehicle type clarification from visual-based dimension estimation[J]. IEEE Intelligent Transportation Systems Conference Proceedings-Oakland (CA), 2001,25 (29 : 201.
  • 8Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer Verlag,1995.
  • 9Collins R,Lipton A,Kanada T,et al.A System for Video Surveillance and Monitoring[R].Pittsburgh:Robotics Institute,Carnegie Mellon University,2000.
  • 10Cucchiara R,Grana C,Piccardi M.Improving Shadow Suppression in Moving Object Detection with HSV Color Information[C]//Proc.of IEEE Int'l Conference on Intelligent Transportation Systems.2001:334-339.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部