摘要
对非线性的磁流变阻尼器进行建模,建立单个磁流变阻尼器的神经网络正模型和神经网络逆模型,设计了两种四磁流变阻尼器的神经网络逆模型,通过两层控制策略将它们应用于汽车半主动悬架控制.结果表明:第1种神经网络逆模型对簧载质量的垂直加速度、俯仰角加速度和侧倾角加速度具有较好的控制效果,可有效改善车辆的行驶平顺性和操纵稳定性;第2种神经网络逆模型还有待改善.
In order to model the nonlinear MR damper, the neural network models for the direct model and the inverse model of a single MR damper are created respectively. On this basis, two different recurrent neural network ( RNN ) inverse models for four MR dampers are designed and applied to the control of the semi-active suspension of the full-vehicle model. The simulation results demonstrate that the first RNN inverse model can greatly reduce the vertical acceleration and pitch angular acceleration and roll angular acceleration of the sprung-mass so that the ride comfort and handling of the semi-active suspension can be dramatically improved. However, there is still room for improvement for the second RNN inverse model.
出处
《上海电力学院学报》
CAS
2010年第1期69-74,共6页
Journal of Shanghai University of Electric Power
基金
上海电力学院科研基金引进人才项目(K2008-47)
关键词
磁流变阻尼器
神经网络
半主动控制
最优控制
整车悬架
MR dampers
neural network
semi-active control
optimal control
suspension of full-vehicle model