摘要
Banach空间X上的全体有界线性算子表示为B(X)对算子A∈B(X),左乘算子LA定义为LA(X)=AX,X∈B(X)。本文讨论了左乘算子LA的约化最小模与算子A的约化最小模的关系,得到γ(LA)≤γ(A)。特别地,对Hilbert空间上的算子A,证明了γ(LA)=γ(A)成立。
B(X) denotes the sets of all bounded linear operators defined on X. For A ∈ B(X), the left multiplicative operator LA on B(X) is defined by LA (X) = AX, X∈(X). Relationship between the reduced minimum modulus of the left multiplicative operator LA and of an operator A is discussed. γ(LA )≤γ(A) is obtained. Particularly, for an operators A on a Hilbert space, γ( LA ) = γ( A ) .
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2010年第2期54-57,共4页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(10871224)
关键词
左乘算子
约化最小模
Hilben空间
left multiplicative operator
reduced minimum modulus
Hilbert space