期刊文献+

双自适应噪声抵消算法的实现

Realization of Dual Adaptive Noise Cancellation Algorithm
下载PDF
导出
摘要 为有效剔除噪声,提高信噪比,提出一种基于双自适应的噪声抵消算法,包括自适应子带分解算法和自适应噪声抵消算法两部分。采用子带分解与噪声功率谱密度匹配的方法来对信号进行非均匀子带分解,根据噪声在子带中的分布进行有效滤波,对低噪或基本上无噪的子带不滤波,而对其它子带采用自适应滤波的算法。仿真对比表明,与传统的均匀子带自适应噪声抵消相比,计算量大大减小,其滤波效果也得到一定的改善。 Extraction of the signals, which can represent sound source information and meanwhile include noise signals, from acoustic sensors is the key technique for sound emission monitoring. To eliminate the noise efficiently and raise the signal-to-noise ratio, this paper brings up a dual-adaptive noise- cancellation algorithm, which includes adaptive sub-band decomposition algorithm and adaptive noise cancellation algorithm. First of all, to reduce the complexity in computation and realize parallel algorithm, the method of the sub-band decomposition, which matches the noise power-spectrum density, is adopted for non-uniform signal sub-band decomposition. Then, to save the computer time, the effective filtering is performed according to the distribution of noise in the sub-band. The sub-bands with low-noise or essentially without noise do not need filtering, while the adaptive filtering algorithm is used for the oth- er sub-bands. The simulation shows that this method can greatly save computer time in comparison with the traditional adaptive noise cancellation method with uniform sub-bands, and the effect of filtering has been improved.
出处 《噪声与振动控制》 CSCD 北大核心 2010年第1期96-98,111,共4页 Noise and Vibration Control
基金 国家重点基础研究发展基金(2007CB209407) 国家高技术研究基金(2006AA06Z119)
关键词 声学 自适应子带分解 自适应抵消 功率谱密度 acoustics adaptive sub-band decomposition adaptive noise cancellation power-spectrum density
  • 相关文献

参考文献6

  • 1Riitta Niemisto, Ioan Tabus. Signal adaptive subband decomposition for adaptive noise cancellation [ C ]. ECCTD'01-European Conference on Circuit Theory and Design, August 28 - 31, 2001, Espoo, Finland.
  • 2Koen Eneman, Marc Moonen. A Relation between subband and frequency-domain adaptive filtering [ C ]. Departement Elektroteehniek ESAT-SISTA/TR, 1997 -23.
  • 3W H Chin, B Farhang Boroujeny. Subband adaptive filtering with real-valued subband signals for acoustic echo cancellation [ J ]. IEE Proc. -Vis. Image Signal Process, 2001,148(4).
  • 4Malte Sandrock, Stefan Schmitt. Realization of an adaptive algorithm with subband filtering approach for acoustic echo cancellation in telecommunication applications [ C ]. DSP ecialists GmbH,D-10245 Berlin,Germany, 2001.
  • 5S. Vitale, G. Heinzel, et al. Recommendation for an algorithm for power spectral density estimation for LISA pathfinder[ N ]. September,2006, 22.
  • 6张威,王旭,葛琳琳,张卓.基于小波变换的子带自适应滤波算法及仿真[J].系统仿真学报,2006,18(4):964-967. 被引量:5

二级参考文献11

  • 1阎平凡 张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2001..
  • 2Pan J,Tompkins W J.A real-time QRS detection algorithm.[J].IEEE Trans.on BME.(S0018-9294).1985,32(3):230.
  • 3Laguna P,et al.Low-pass differentiators for biological signals with known spectra:Application to ECG signal processing.[J].IEEE Trans.on BME (S0018-9294).2000,37(4).
  • 4Daubechies.Ten Lectures on Wavelet,CBMS-NSf conference series in applied mathematics,SIAM ED[Z].1992.
  • 5S Mallat.A Wavelet Tour of Signal Processing (Second Edition)[M].China Machine Process,2003.
  • 6S G Mallat.Theory of multi-resolution signal decomposition:the wavelet representation[J].IEEE Trans.Pattern Anal.Machine Intell.(S0162-8828).1989,11(7):647-693.
  • 7S Yao,Z Y He,et al.Evolving Wavelet Neural Networks for Function Approximation[J].IEE Electronics Letters (S0013-5194).1996,32(4).
  • 8Doherty J F,porayath R.A robust echo canceler acoustic environments[J].IEEE Trans.Circuits and Systems.Ⅱ,(S1057-7130).1997,44:389-398.
  • 9Compos M,Antoniou A.Anew quasi-Newton adaptive filtering algorithm[J].IEEE Trans.Circuits and System,Ⅱ (S1057-7130).1997,44:924-934.
  • 10Erdol N,Basbug F.Wavelet based adaptive filtering[J].IEEE Trans.SP (S1053-587X).1996,44(9):2163-2170.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部