期刊文献+

最差性能最优的稳健波束形成算法 被引量:11

Robust beamforming algorithm using worse-case performance optimization
下载PDF
导出
摘要 基于最差性能最优的稳健波束形成算法可以等价转换成加载样本矩阵求逆(LSMI)算法.提出了一种新的求解方法,准确地计算出Lagrange乘数,给出了LSMI算法中的最优加载量,解决了对角加载技术中加载量估计难题.理论分析和计算机仿真表明,具有最优负加载的LSMI波束形成算法具有最优的性能改善,模约束参数选取得越大,性能改善越接近于最优. The robust adaptive beamformer using worse-case performance optimization can be converted to the loaded sample matrix inversion (LSMI) algorithm equivalently. For the LSMI beamformer, a novel method is developed to solve the precise Lagrange multiplier, and the optimal loading level can be computed exactly. Most important, this method gives the efficient solution to finding the optimal loading level for diagonal loading. Theoretical analysis and simulation indicate that the LSMI beamformer with the optimal negative loading can give the best performance improvement, and the constraint parameter is so selected that the larger it is the closer to optimization the improvement will be .
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2010年第1期1-7,17,共8页 Journal of Xidian University
基金 国家杰出青年基金资助项目(60825104) 国家自然科学基金资助项目(60736009) 博士后基金资助项目(20090451251) 陕西省工业攻关资助项目(2009k08-31)
关键词 自适应波束形成 导向矢量失配 最差性能最优 负对角加载 adaptive beamforming steering vector mismatch worst-case performance optimization negative diagonal loading
  • 相关文献

参考文献15

  • 1Feldman D D, Griffiths L J. A Projection Approach to Robust Adaptive Beamforming [J]. IEEE Trans on Signal Processing, 1994, 42(4): 867-876.
  • 2Guerci J R. Theory and Application of Covarianee Matrix Tapers for Robust Adaptive Beamforming[J]. IEEE Trans on Signal Processing, 1999, 47(4): 997-985.
  • 3Carlson B D. Covariance Matrix Estimation Errors and Diagonal Loading in Adaptive Arrays [J]. IEEE Trans on Aerosp Electron Syst, 1988, 24(7): 397-401.
  • 4Tian Z, Bell K L, Van Trees H L. A Recursive Least Squares Implementation for LCMP Beamforming under Quadratic Constraint[J]. IEEE Trans on Signal Processing, 2001, 49(6) : 1138-1145.
  • 5Elnashar A, Elnoubi S M, El-Mikati H A. Further Study on Robust Adaptive Beamforming With Optimum Diagonal Loading[J]. IEEE Trans on Antennas Propagation, 2006, 54(12) : 3647-3658.
  • 6Li Jian, Stotica P, Wang Zhisong. On Robust Capon Beamformer and Diagonal Loading[J]. IEEE Trans on Signal Processing, 2003, 51(7): 1702-1715.
  • 7Li Jian, Stotica P, Wang Zhisong. Doubly Constrained Robust Capon Beamformer[J]. IEEE Trans on Signal Processing, 2004, 52(9): 2407-2423.
  • 8Shahbazpanahi S, Gershman A B, Luo Zhiquan, et al. Robust Adaptive Beamforming for General-rank Signal Models[J]. IEEE Trans on Signal Processing, 2003, 51(9): 2257-2269.
  • 9Vorobyov S A, Gershman A B, Luo Zhiquan. Robust Adaptive Beamforming Using Worst-case Performance Optimization: a Solution to the Signal Mismatch Problem[J]. IEEE Trans on Signal Processing, 2003, 51(2) : 313-324.
  • 10Oh J S, Kim S J, Hsiung K L. A Computationally Efficient Method for Robust Minimum Variance Beamforming[C]// Vehicular Technology Conference 2005: Vol 2. Stockholm: IEEE, 2005: 1162-1165.

同被引文献93

引证文献11

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部