期刊文献+

干扰信道中基于竞争博弈的准最佳功率分配方案 被引量:2

Near-optimal power allocation scheme based on the competitive game in the interference channel
下载PDF
导出
摘要 频率选择性高斯干扰信道下多用户总速率最大化的问题被建模成一个带有补偿函数的非合作博弈模型.补偿函数也近似成子信道之间进行博弈的模型(子信道博弈).通过子信道之间的迭代计算,子信道博弈能够达到一个纳什均衡,也就是渐近最佳补偿.接着提出了多领导斯坦克尔伯格均衡的概念,来描述带有渐近最佳补偿函数的非合作博弈的均衡点.利用凸优化技术,开发了一种迭代多水平面功率注水算法,来达到斯坦克尔伯格均衡.在该均衡点上,所有用户都会工作在准最佳速率区域边界上.仿真结果表明,迭代多水平面功率注水算法所能达到的总速率比迭代功率注水算法有明显的提高,并且能达到一个准最佳的可达速率区域. This paper considers an optimization problem of sum-rate in the Gaussian frequency-selective channel. This problem can be modeled as a competitive game model with a compensation function. We find that the compensation function can also be modeled as a game among sub-channels (called subchannel game in this paper). In an iterative fashion, the Nash equilibrium of the sub-channel game can be reached, which is the asymptotically optimal compensation term. Stackelberg equilibrium with multiple leaders is introduced to represent the equilibrium point of the competitive game model with a compensation function. At the equilibrium point, all users operate on the optimal rate region frontier. Then, an iterative multiple water-levels water filling algorithm is proposed to efficiently reach the Stackelberg equilibrium. Simulation results show that our proposed algorithm has a significant improvement on the sum-rate compared with IWFA and exhibits the quasi-to-optimal performance.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2010年第1期23-27,48,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(U0635003)
关键词 干扰信道 迭代注水 分布式功率分配 博弈论 interference channel iterative water filling distributed power allocation game theory
  • 相关文献

参考文献11

  • 1Han T S, Kobayashi K. A New Achievable Rate Region for the Interference Channel[J]. IEEE Trans on Information Theory, 1981, 27(1): 49-60.
  • 2郭彩丽,曾志民,冯春燕,刘芳芳.一种认知无线电网络中的新型主动频谱选择算法[J].西安电子科技大学学报,2008,35(6):1121-1126. 被引量:6
  • 3Laufer A, Leshem A, Messer H. Game Theoretic Aspects of Distributed Spectral Coordination with Application to DSL Networks [EB/OL]. [2008-11-10]. http://arxiv, org/pdf/cs/0602014.
  • 4Suris J E, DaSilva L A, Han Z, et al. Cooperative Game Theory for Distributed Spectrum Sharing [C]//IEEE International Conference on Communications. Glasgow: IEEE, 2007: 5282-8287.
  • 5Yu W, Ginis G, Cioffi J M. Distributed Multiuser Power Control for Digital Subscriber Lines [J]. IEEE Journal on Selected Areas in Communications, 2002, 20(5) : 1105-1115.
  • 6Cendrillon R, Yu W, Marc M. Optimal Multiuser Spectrum Balancing for Digital Subscriber Lines [J]. IEEE Trans on Communications, 2006, 54(5): 922-933.
  • 7Cendrillon R, Moonen M. Iterative Spectrum Balancing for Digital Subscriber Lines [C]//IEEE International Conference on Communications. Seoul: IEEE, 2005: 1937-1941.
  • 8Tsiaflakis P, Diehl M, Moonen M. Distributed Spectrum Management Algorithms for Multiuser DSL Networks [J]. IEEE Trans on Signal Processing, 2008, 56(10): 4825-4843.
  • 9Cendrillon R, Huang J, Mung C. Autonomous Spectrum Balancing for Digital Subscriber Lines [J]. IEEE Trans on Signal Processing, 2007, 55(8): 4241-4257.
  • 10Fudenberg D, Tirole J. Game Theory [M]. Cambridge: MIT Press, 1991.

二级参考文献8

  • 1Simon Haykin. Cognitive Radio: Brain-empowered Wireless Communications [J]. IEEE JSAC, 2005, 23(2): 201-220.
  • 2Guo Caili, Zhang Tiankui, Zeng Zhimin, et al. Investigation on Spectrum Sharing Technology Based on Cognitive Radio [C]//ChinaCOM 2006. Beijing: IEEE, 2006: 1-5.
  • 3Zheng Haitao, Peng Chunyi. Collaboration and Fairness in Opportunistic Spectrum Access[C]//IEEE ICC 2005. Seoul: IEEE, 2005: 3132-3136.
  • 4Wang Wei, Liu Xin. List-coloring Based Channel Allocation for Open-spectrum Wireless Networks [C]//IEEE VTC 2005-fall. Dallas: IEEE, 2005: 690-694.
  • 5Nie N, Comaniciu C. Adaptive Channel Allocation Spectrum Etiquette for Cognitive Radio Networks[C]//IEEE DySPAN .2005. Baltimore Harbor: IEEE, 2005: 269-278.
  • 6Cox D R. Renewal Theory [M]. London.. Butler & Tanner Ltd, 1967: 58-79.
  • 7Ross S M. Stochastic Processes [M]. New York: John Wiley and Sons Ltd, 1983:121-134.
  • 8郭彩丽 冯春燕 曾志民 等.认知无线电网络中的合作频谱分配算法.北京邮电大学学报,2007,30:126-130.

共引文献5

同被引文献17

  • 1Shannon C E. Two-way Communication Channels[A].Berkeley:University of California Press,1961.611-644.
  • 2Carleial A B. A Case Where Interference does not Reduce Capacity[J].IEEE Transactions on Information theory,1975,(05):569-570.
  • 3Han T S,Kobayashi K. A New Achievable Rate Region for the Interference Channel[J].IEEE Transactions on Information theory,1981,(11):49-60.
  • 4Sato H. The Capacity of the Gaussian Interference Channel under Strong Interference[J].IEEE Transactions on Information theory,1981,(06):786-788.
  • 5Shang X H,Kramer G,Chen B. A New Outer Bound and the Noisy-Interference Sum-Rate Capacity for Gaussian Interference Channels[J].IEEE Transactions on Information theory,2009,(02):689-699.
  • 6Motahari A S,Khandani A K. Capacity Bounds for the Gaussian Interference Channel[J].IEEE Transactions on Information theory,2009,(02):620-643.
  • 7Annapureddy V S,Veeravalli V V. Gaussian Interference Networks:Sum Capacity in the Low-Interference Regime and New Outer Bounds on the Capacity Region[J].IEEE Transactions on Information theory,2009,(07):3032-3050.
  • 8Tuninetti D,Weng Y. On the Han-Kobayashi Achievable Region for Gaussian Interference Channels[A].Toronto:University of Toronto Press,2008.240-244.
  • 9Sason I. On Achievable Rate Regions for the Gaussian Interference Channel[J].IEEE Transactions on Information theory,2004,(06):1345-1356.
  • 10Etkin R,Tse D N C,Wang H. Gaussian Interference Channel Capacity to within One Bit[J].IEEE Transactions on Information theory,2008,(12):5534-5562.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部